

Multi-Modal Multi-Task Unified Embedding Model (M3T-UEM): A Task-Adaptive Representation Learning Framework

Rohan Sharma, Changyou Chen, Feng-Ju Chang, Seongjun Yun, Xiaohu Xie, Rui Meng, Dehong Xu, Alejandro Mottini, Qingjun Cui

Introduction

M3T-UEM is a unified large language model-based framework for **multi-modal** and **multi-task retrieval**, introducing a **task-aware Bayesian contrastive loss** and **multi-token summarization** mechanism that deliver **state-of-the-art performance** across multi-task, multi-modal, multilingual, compositional, and zero-shot retrieval benchmarks.

Illustration and Algorithm

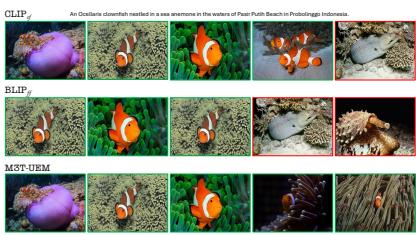
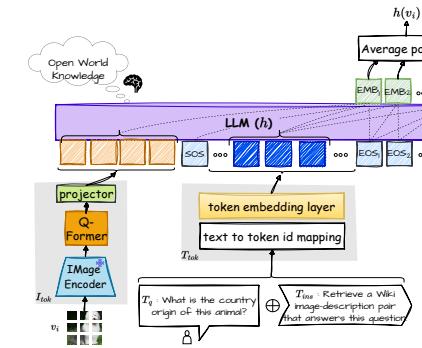
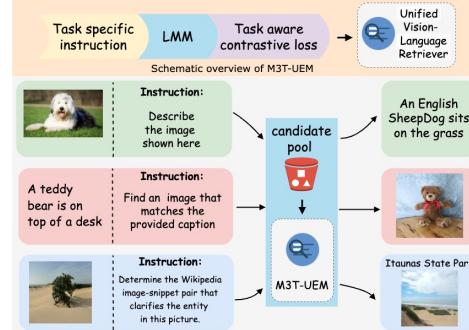




Table 7. **Ablations:** Retrieval performance average over M-BEIR benchmark ablating various design components. Differences against the best variant are reported in **red**.

TA Loss	Two Stage	16xEOS	LM-Loss	Retrieval Avg.
✓	✓	✓	✓	38.0
✗	✓	✓	✓	37.4 (-0.6)
✓	✗	✓	✓	35.7 (-2.3)
✓	✓	✗	✓	37.6 (-0.3)
✓	✓	✓	✗	37.9 (-0.1)

Multi-Task Learning Framework

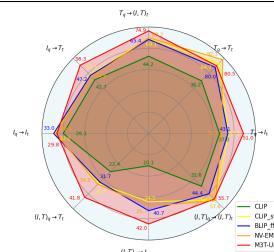
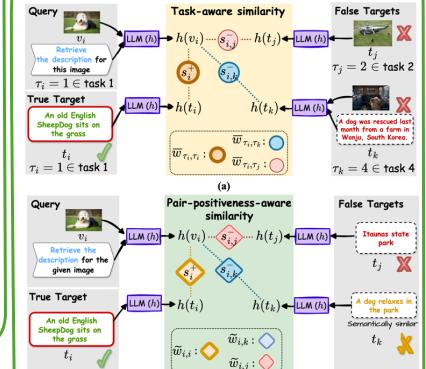

Evaluation

Image Classification in the Wild over 20 benchmark datasets. **: CLIP; *: Open CLIP

Method	C101	C10	C100	C211	DTex	EST	FER	FGVC	OxP	VOC	F101	GT	OxF	R45	HM	RST	KIT	MNT	PC	SiC	Mean Acc.
ViT-L **	93.0	94.0	67.4	28.1	52.6	49.5	45.5	25.7	92.2	79.5	90.2	52.9	71.4	68.9	62.3	59.9	20.5	64.4	58.4	67.4	61.8
ViT-L *	94.1	96.0	82.5	25.4	61.5	65.1	47.7	32.4	92.9	80.7	89.9	56.5	74.2	68.9	72.1	60.6	22.5	65.2	57.2	91.4	66.1
ViT-g-14 *	94.4	97.1	83.9	28.8	68.3	64.5	48.1	37.8	94.3	85.8	91.6	46.6	78.1	72.6	53.3	64.6	18.2	68.4	55.1	92.9	67.2
ViT-H-14 *	84.7	97.4	84.7	29.9	67.9	71.7	50.6	42.6	94.3	77.6	92.7	54.4	79.9	70.6	53.1	64.1	11.1	72.8	53.6	93.5	67.3
MM-GEM	92.7	97.0	82.8	26.0	67.2	69.5	47.4	31.9	90.6	80.3	89.8	54.3	69.8	68.9	61.5	61.5	26.2	69.5	50.5	89.3	66.3
M3T-UEM	92.8	98.6	88.2	24.5	65.5	71.1	57.6	25.9	86.9	84.8	90.3	50.1	74.7	70.0	58.3	61.9	28.8	68.9	69.1	82.1	67.5


Table 4. **Compositionality:** The image-caption-matching accuracy (%) for the SUGARCREPE (SC) and WINOGROUND datasets.

Dataset	M3T-UEM				ViT-g-14			
	$\mathcal{T}_q \rightarrow \mathcal{I}_t$	$\mathcal{I}_q \rightarrow \mathcal{T}_t$						
SC - Replace	100.0	88.9	100.0	81.7				
SC - Swap	100.0	68.8	100.0	62.9				
SC - Add	100.0	87.5	100.0	83.3				
WinoGround	13.0	34.5	11.2	28.0				
Average	78.2	69.9	77.8	64.0				

Multi-modal retrieval performance comparisons on M-BEIR to the CLIP and LMM based approaches.

Weighted Contrastive Learning

$$\mathcal{L}_{\text{mcon}} = -\frac{1}{N} \sum_{i=1}^N \log \mathcal{L}_i, \text{ with}$$

$$\mathcal{L}_i \triangleq \frac{s_i^+}{s_i^+ + \sum_{k=1}^K (\bar{w}_{\tau_i, \tau_k} + \bar{w}_{ik}) s_{ik}^-} \quad (1)$$

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{mcon}} + \lambda \mathcal{L}_{\text{lm}}, \quad (2)$$

where λ is a hyperparameter set to 0.1 in our experiments.

Introducing \mathbf{u}_t , we have the joint

$$p(\mathcal{D}, \{u_i\} | \{\bar{w}_{\tau_i, \tau_k}\}, \{\bar{w}_{ik}\}) \propto s_i^+ e^{-u_i s_i^+} \prod_{k=1}^K e^{-u_i (\bar{w}_{\tau_i, \tau_k} + \bar{w}_{ik}) s_{ik}^-} \quad (3)$$

And thereafter, the posteriors for \mathbf{u}_t , \mathbf{u} are

$$p(\bar{w}_{\tau_i, \tau_k} | \mathcal{D}, \{u_i\}) = \text{Gamma}(1 + a_{\tau_i}, b_{\tau_i} + \sum_{i'} 1_{\tau_{i'} = \tau_i} 1_{\tau_{k'} = \tau_k} u_{i'} s_{i' k'}^-), \quad (4)$$

$$p(u_i | \mathcal{D}, \{u_i\}, \{\bar{w}_{ik}\}) = \text{Gamma}(1 + a_i, b_i + u_i s_{ik}^-), \quad (5)$$

$$= \text{Gamma}(1, s_i^+ + \sum_{k=1}^K (\bar{w}_{\tau_i, \tau_k} + \bar{w}_{ik}) s_{ik}^-). \quad (5)$$