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Introduction

M3T-UEM is a unified large language
model-based framework for multi-modal
and multi-task retrieval, introducing a
task-aware Bayesian contrastive loss and
multi-token summarization mechanism
that deliver state-of-the-art performance
across multi-task, multi-modal,
multilingual, compositional, and zero-
shot retrieval benchmarks.
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Illustration and Algorithm

Multi-Task Learning Framework
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Evaluation

Image Classification in the Wild over 20 benchmark datasets. **: CLIP; *: Open CLIP
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