
Introduction
M3T-UEM is a unified large language 
model–based framework for multi-modal 
and multi-task retrieval, introducing a 
task-aware Bayesian contrastive loss and 
multi-token summarization mechanism 
that deliver state-of-the-art performance 
across multi-task, multi-modal, 
multilingual, compositional, and zero-
shot retrieval benchmarks.
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An Ocellaris clownfish nestled in a sea anemone in the waters of Pasir Putih Beach in Probolinggo Indonesia.

Figure 4. Qualitative illustration: Baseline models in the M-BEIR benchmark, such as CLIPSF and BLIPSF, often retrieve images with
broadly relevant visual features yet miss fine-grained semantic accuracy. For instance, they may return marine animals like moray eels
instead of the correct species, Ocellaris clownfish, due to shared underwater context and similar ecological cues. M3T-UEM resolves
such ambiguities by leveraging task-adaptive understanding to ground retrievals in both taxonomic and relational semantics, consistently
selecting images that align with the full intent of the textual prompt demonstrating that it is better at finding nemo.

k→NN) are reported for both datasets treating all classifi-
cation/prediction tasks as image-caption matching. Finally,
multilingual zero-shot retrieval using the Flickr datasets
[18, 64] and the XTD200 dataset [1] are conducted with
comparisons against recent methods using the former. We
emphasize comparisons against ViT-g-14 as it is employed
as the vision encoder in our framework.

4.3. Results and Discussions
4.3.1. Multi-Modal Multi-Task Retrieval
A comprehensive evaluation over the M-BEIR retrieval
benchmark is presented in Table 2, incorporating zero-shot
and multi-task tuned CLIP/BLIP models [60]. Addition-
ally, we incorporate a breadth of contemporary LMM based
arts, NV-Embed [31] (upon multimodal adaptation), MM-
Embed [35] and LLaVA based fine-tuned methods (Ap-
pendix 6.1). M3T-UEM (TA) demonstrates the best over-
all retrieval performance. We additionally compare the task-
aware (TA) variant against the standard contrastive variant
(STD) noting that the task-aware loss enables better recalls,
further testifying to the merits of incorporating an auto-
mated regime of selective task importance based weigh-
ing within a ubiquitous contrastive loss function. We at-
tribute the improved performance to the integration of richer
image-caption datasets (LAION and CC3M) but also to
the model’s task awareness in distinguishing fine-grained
multimodal relationships across datasets of varying scales.
Qualitative evaluation consists of the top-5 retrievals (Tq ↑
It) as compared against CLIPsf and BLIPsf in Figure 4.
While CLIPSF and BLIPSF retrieve visually similar under-
water scenes, they often miss taxonomic cues, returning

moray eels instead of Ocellaris clownfish, whereas M3T-
UEM aligns with both context and species-level semantics.

4.3.2. Zero-Shot Image Classification
Table 3 compares M3T-UEM to MM-GEM and multiple
CLIP and OpenCLIP based modesl over the ICinW bench-
mark consisting of 20 datasets with intricate visual cues
and challenging classification boundaries. M3T-UEM con-
sistently demonstrates superior performance, achieving the
highest average accuracy of 67.51% and testifying to the
benefits of a task-aware approach. M3T-UEM manages to
focus effectively on relevant features during training and
generalizes well in out-of-distribution zero-shot contexts
with new, unseen classes. Additional zero-shot evaluations
are under supplementary Section 9.1.

4.3.3. Compositionality Prediction
A curious trait of incorporating LLMs into retrieval tasks
that we aim to highlight is demonstrated in Table 4. By
leveraging the pretrained LLM’s structured knowledge of
object relationships, attributes, and contextual hierarchies,
M3T-UEM achieves strong performance across the SUG-
ARCREPE datasets, (detailed further in Appendix section
9.2) particularly excelling in text-driven compositional rea-
soning. On tasks like “Replace” and “Add,” M3T-UEM
outperforms OpenCLIP ViT-g-14, demonstrating superior
relational understanding with 88.9% text retrieval ac-
curacy compared to OpenCLIP’s 81.7% on “Replace”.
While both models achieve competitive results in image re-
trieval, M3T-UEM demonstrates superior comprehension
of image queries. This enhancement stems from the refined
image embedding process, where ViT representations are

Table 2. M-BEIR Retrieval: Performance Comparisons to the SoTA zero-shot CLIP/BLIP and UniIR models, CLIPsf, BLIPff, their
multi-task variants (MT), and recent LMM based methods. STD and TA stand for M3T-UEM trained with standard InfoNCE loss and
task aware (TA) loss, respectively. Recall@5 is measured except for FashionIQ and Fashion200K datasets, where we report Recall@10.
LL-E: LLaVA-E, LL-P: LLaVA-P, MM-E: MM-Embed, NV-E: NV-Embed.

SoTA Zero-Shot MT UniIR SoTA LMM M3T-UEMTask Dataset
CLIP BLIP2 CLIPsf BLIPff CLIPsf BLIPff LL-E LL-P MM-E NV-E TA STD

(Tq → It)
VisualNews [37] 43.3 16.7 40.6 22.8 42.6 23.4 33.2 34.2 41.0 32.1 40.1 43.4
MSCOCO [36] 61.1 63.8 79.9 78.3 81.1 79.7 69.3 70.8 71.3 64.6 82.1 81.9
Fashion200K [16] 6.6 14.0 16.8 25.8 18.0 26.1 13.5 13.3 17.1 10.4 30.7 27.7

(Tq → Tt) WebQA [4] 36.2 38.6 83.7 77.9 84.7 80.0 88.6 88.8 95.9 92.1 80.5 80.9

(Tq → (I, T )t)
EDIS [39] 43.3 26.9 57.4 51.2 59.4 50.9 55.9 56.6 68.8 55.1 67.8 63.5

WebQA [4] 45.1 24.5 76.7 79.2 78.7 79.8 80.3 81.6 85.0 81.3 82.0 80.1

Iq → Tt
VisualNews [37] 41.3 15.0 40.0 20.9 43.1 22.8 32.4 33.3 41.3 30.4 44.4 43.9
MSCOCO [36] 79.0 80.0 90.3 85.8 92.3 89.9 91.8 92.2 90.1 90.3 93.4 91.7
Fashion200K [16] 7.7 14.2 18.4 27.4 18.3 28.9 13.9 14.7 18.4 13.2 31.0 28.3

Iq → It NIGHTS [14] 26.1 25.4 31.1 31.5 32.0 33.0 31.8 30.7 32.4 30.4 29.8 28.1

(I, T )q → Tt
OVEN [22] 24.2 12.2 46.6 42.8 45.5 41.0 37.9 39.1 42.1 36.3 51.7 51.8
InfoSeek [8] 20.5 5.5 28.3 23.9 27.9 22.4 31.0 32.9 42.3 33.3 31.9 27.7

(I, T )q → It
FashionIQ [61] 7.0 4.4 23.2 28.4 24.4 29.2 27.4 27.0 25.7 26.0 31.4 29.5
CIRR [40] 13.2 11.8 38.7 48.6 44.6 52.2 48.1 45.4 50.0 45.3 52.5 52.3

(I, T )q → (I, T )t
OVEN [22] 38.8 27.3 69.0 56.3 67.6 55.8 61.6 62.6 64.1 61.7 71.4 72.8
InfoSeek [8] 26.4 15.8 49.2 32.9 48.9 33.0 50.3 50.0 57.7 53.4 40.0 39.1

Average 32.5 24.8 49.4 45.8 50.6 46.8 47.9 48.3 52.7 47.2 53.9 52.7

Table 3. ICinW Benchmark. Evaluation using zero-shot classification accuracy (%). The datasets correspond to C101: Caltech101,
C10: CIFAR10, C100: CIFAR100, C211: Country211, DTex: DescriTextures, EST: EuroSAT, FER: FER2013, FGVC: FGVC Aircraft,
OxP: Oxford Pets, VOC: VOC2007, F101: Food101, GT: GTSRB, OxF: Oxford Flowers, R45: RESISC45, HM: HatefulMemes, RST:
Rendered SST2, KIT: KITTI, MNT: MNIST, PC: PatchCamelyon, StC: Stanford Cars and datasets respectively. **: CLIP; *: Open CLIP

Method C101 C10 C100 C211 DTex EST FER FGVC OxP VOC F101 GT OxF R45 HM RST KIT MNT PC StC Mean Acc.
ViT-L ** 93.0 94.0 67.4 28.1 52.6 49.5 45.5 25.7 92.2 79.5 90.2 52.9 71.4 68.9 62.3 59.9 20.5 64.4 58.4 67.4 61.8
ViT-L * 94.1 96.0 82.5 25.4 61.5 65.1 47.7 32.4 92.9 80.7 89.9 56.5 74.2 68.9 72.1 60.6 22.5 65.2 57.2 91.4 66.1
ViT-g-14 * 94.4 97.1 83.9 28.8 68.3 64.5 48.1 37.8 94.3 85.8 91.6 46.6 78.1 72.6 53.3 64.6 18.2 68.4 55.1 92.9 67.2
ViT-H-14 * 84.7 97.4 84.7 29.9 67.9 71.7 50.6 42.6 94.3 77.6 92.7 54.4 79.9 70.6 53.1 64.1 11.1 72.8 53.6 93.5 67.3
MM-GEM 92.7 97.0 82.8 26.0 67.2 69.5 47.4 31.9 90.6 80.3 89.8 54.3 69.8 68.9 61.5 61.5 26.2 69.5 50.5 89.3 66.3

M3T-UEM 92.8 98.6 88.2 24.5 65.5 71.1 57.6 25.9 86.9 84.8 90.3 50.1 74.7 70.0 58.3 61.9 28.8 68.9 69.1 82.1 67.5

effectively mapped into the LLM embedding space. Simi-
larly, in WINOGROUND, M3T-UEM surpasses OpenCLIP
in text retrieval while maintaining comparable image re-
trieval accuracy. These results highlight M3T-UEM’s ad-
vantage in relational reasoning, reinforcing the benefits of
LLM-based multimodal alignment in capturing fine-grained
compositional structures.
Table 4. Compositionality: The image-caption-matching accu-
racy (%) for the SUGARCREPE (SC) and WINOGROUND datasets.

M3T-UEM ViT-g-14Dataset Tq → It Iq → Tt Tq → It Iq → Tt

SC - Replace 100.0 88.9 100.0 81.7
SC - Swap 100.0 68.8 100.0 62.9
SC - Add 100.0 87.5 100.0 83.3
WinoGround 13.0 34.5 11.2 28.0

Average 78.2 69.9 77.8 64.0

4.3.4. Multilingual Zero-Shot Retrieval
Table 6 compares the zero-shot retrieval over Flickr30k [64]
with contemporary arts where M3T-UEM performs at par
with the SoTA methods. However, the comparative per-
formance of M3T-UEM and OpenCLIP ViT-g-14 on mul-
tilingual zero-shot retrieval tasks in Table 5 highlights the
strength of M3T-UEM’s LLM architecture, which leverages
multilingual capabilities despite being fine-tuned solely in
English. While both models perform similarly in English,
M3T-UEM achieves higher recalls. In non-English con-
texts, M3T-UEM consistently outperforms OpenCLIP, es-
pecially in languages like Chinese, Japanese, and Swedish,
achieving recalls as high as 81.5% and 85.2% for Swedish
compared to OpenCLIP’s 26.6% and 37.1%. The ViT-
g-14 model struggles particularly with non-Latin scripts
(Japanese and Chinese), underscoring M3T-UEM’s supe-
rior cross-lingual generalization and adaptability.

Table 2. M-BEIR Retrieval: Performance Comparisons to the SoTA zero-shot CLIP/BLIP and UniIR models, CLIPsf, BLIPff, their
multi-task variants (MT), and recent LMM based methods. STD and TA stand for M3T-UEM trained with standard InfoNCE loss and
task aware (TA) loss, respectively. Recall@5 is measured except for FashionIQ and Fashion200K datasets, where we report Recall@10.
LL-E: LLaVA-E, LL-P: LLaVA-P, MM-E: MM-Embed, NV-E: NV-Embed.
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VisualNews [37] 43.3 16.7 40.6 22.8 42.6 23.4 33.2 34.2 41.0 32.1 40.1 43.4
MSCOCO [36] 61.1 63.8 79.9 78.3 81.1 79.7 69.3 70.8 71.3 64.6 82.1 81.9
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larly, in WINOGROUND, M3T-UEM surpasses OpenCLIP
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trieval accuracy. These results highlight M3T-UEM’s ad-
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with the SoTA methods. However, the comparative per-
formance of M3T-UEM and OpenCLIP ViT-g-14 on mul-
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strength of M3T-UEM’s LLM architecture, which leverages
multilingual capabilities despite being fine-tuned solely in
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texts, M3T-UEM consistently outperforms OpenCLIP, es-
pecially in languages like Chinese, Japanese, and Swedish,
achieving recalls as high as 81.5% and 85.2% for Swedish
compared to OpenCLIP’s 26.6% and 37.1%. The ViT-
g-14 model struggles particularly with non-Latin scripts
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Figure 3. The proposed task-aware contrastive loss: Two essential
weights are introduced to assess the positive and negative pair sim-
ilarity scores. While the task-aware weights (a) combat the inter-
task variances, e.g. to reduce the pair similarity score if the target
modality is incorrect , the pair-positiveness-aware weights (b) ac-
count for intra-task semantic similarities between queries and tar-
gets and adjust the scale of a similarity scores accordingly.

task index, e.g,, ω(vi) = 1 means vi belongs to the first
task. For notation simplicity, we denote ω(vi) or ω(ti)
as ωi. Then, we associate each task pair (i, j) with a ran-
dom weight wi,j denoting the correlation/importance of the
two task, i.e., if the correlation is high, data from one task
should be paid more attention in constructing the contrastive
loss. To this end, a task-aware contrastive loss is defined as
Lcon ↭ → 1
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reflects a task-wise importance score
that will be automatically inferred during training. Addi-
tionally, inspired by [6, 48], we incorporate sample-specific
weights w̃ik for each positive-negative pair (vi, tk) for
more flexible modeling, and formulate our final multi-task
contrastive loss as: Lmcon = → 1
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Remark 2 Compared to recent work using a sample-wise

weighting scheme [48], our approach with loss in (1) 1)

simplifies the original loss by consolidating redundant pos-

itive weights wωi,ωi into the negative weights, enhancing

‡We consider a single positive pair in each Li here. Derivations to
handle multiple positive pairs are given in Supplementary 7.

training stability; and 2) integrates both task-wise and

sample-wise adaptations, making it the first to introduce

such modeling in contrastive learning, thus offering greater

generalizability and improved performance.

By incorporating these task-aware and sample-specific
weights, our multi-task loss automatically balances data
from different tasks (through task-aware weights w̄ωi,ωk )
and handles potential noisy positive-negative data pairs (via
pairwise weights w̃ik). This capability is crucial for learn-
ing robust multimodal representations in multi-task settings,
a challenge not yet addressed in existing work. Finally,
our LLM backbone naturally incorporates an autoregressive
language-model loss, Llm, which serves as a regularizer to
balance both embedding and generation qualities and our
final loss for M3T-UEM is given by

Ltotal = Lmcon + εLlm , (2)
where ε is a hyperparameter set to 0.1 in our experiments.

Optimization Optimizing our task-aware contrastive loss
(Eq. (1)) presents two main challenges: 1) The optimal so-
lution tends toward a degenerate case where all weights
w̄ωi,ωk and w̃ik are zero, undesirable because it disregards
negative data pairs, making them contribute nothing to the
learning process; 2) Direct optimization of all weights via
stochastic gradient descent is infeasible, as the number of
weights grows quadratically with respect to the data size.
Fortunately, we can leverage the stochastic expectation-
maximization (EM) approach [46], to alternatively sample
the weights given the LLM, and optimize the LLM back-
bone based on Eq. (1) using the sampled weights. We there-
fore reformulate the loss in Eq. (1) as a likelihood func-
tion in a probabilistic framework and introduce appropri-
ate priors for the weights to enable efficient posterior in-
ference. We then augment the likelihood in Eq. (1) with
auxiliary random variables {ui}Ni=1 and using the Gamma
identity [6], we can express Eq. (1) as a joint distribution
over the data D and auxiliary variables ui, conditioned on
the random weights {w̄ωi,ωk , w̃ik}, as follows:
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defined as p(w̄ωi,ωk) = Gamma(aω , bω ) and p(w̃ik) =
Gamma(a, b) . This allows the posterior distributions
p(w̄ωi,ωk |D, ui) and p(w̃ik|D, ui) to also follow Gamma
distributions that can be directly sampled from:
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Fortunately, we can leverage the stochastic expectation-
maximization (EM) approach [46], to alternatively sample
the weights given the LLM, and optimize the LLM back-
bone based on Eq. (1) using the sampled weights. We there-
fore reformulate the loss in Eq. (1) as a likelihood func-
tion in a probabilistic framework and introduce appropri-
ate priors for the weights to enable efficient posterior in-
ference. We then augment the likelihood in Eq. (1) with
auxiliary random variables {ui}Ni=1 and using the Gamma
identity [6], we can express Eq. (1) as a joint distribution
over the data D and auxiliary variables ui, conditioned on
the random weights {w̄ωi,ωk , w̃ik}, as follows:
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We introduce Gamma priors§ for the weights {w̄ωi,ωk , w̃ik},
defined as p(w̄ωi,ωk) = Gamma(aω , bω ) and p(w̃ik) =
Gamma(a, b) . This allows the posterior distributions
p(w̄ωi,ωk |D, ui) and p(w̃ik|D, ui) to also follow Gamma
distributions that can be directly sampled from:
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sample-wise adaptations, making it the first to introduce

such modeling in contrastive learning, thus offering greater

generalizability and improved performance.
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where ε is a hyperparameter set to 0.1 in our experiments.
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Algorithm 1 Stochastic EM for Learning M3T-UEM
1: for iter do
2: for ns = 1, · · · ,M do
3: Sample {ui} from the posteriors Eq. (5).
4: Sample {w̄ωi,ωk} from the posteriors Eq. (3).
5: Sample {w̃ik} from the posteriors Eq. (4).
6: end for
7: Based on the sampled weights {w̄ωi,ωk} and {w̃ik},

optimize the model parameter with the proposed
task-aware contrastive loss in Eq. (2) with SGD.

8: end for

where 1a=b = 1 if a equals b and 0 otherwise. In addition,
conditioned on the weights, the posterior distribution of ui

also follows simple Gamma distributions:

p(ui|D, {w̄ωi,ωk}, {w̃ik})

=Gamma(1, s+i +
K∑

k=1

(w̄ωi,ωk + w̃ik)s
→
ik) . (5)

Consequently, a stochastic EM algorithm can be applied to
alternately infer the random weights and optimize the model
parameters (LLM weights). The specific algorithm is out-
lined in Algorithm 1, with more detailed explanations and
derivations provided in the supplementary 7.

4. Experiments
We use the e5-Mistral-7b-instruct [59] as the backbone and
adapt the best out-of-the-box version of the BLIP-2 frame-
work containing the Q-Former and the ViT-g-14 vision en-
coder which we retain, ensuring the preservation of align-
ment between the two components. A comprehensive list of
parameters are enumerated in Table 1.

Table 1. Model and Training Hyperparameters. Key parame-
ters for backbone, training, and optimization.

Component Details
Backbone e5-Mistral-7B-Instruct [59]
Vision Encoder ViT-g-14 + Q-Former (BLIP-2 [34])

Learning Rate Stage 1: 2→ 10→3, Stage 2: 1→ 10→4

Decay & Temp. ω = 0.9999, µ = 0.01

LoRA Rank: 32, Scaling: ε = 32
Training Steps Stage 1: 7K, Stage 2: 14K

EOS Tokens 16, Mean-Pooling
Hardware 64→ NVIDIA A100, Batch: 5120

4.1. Training Procedure
In line with prior work [33, 34, 38], we conduct the training
process in two stages, using Eq. (2), as described below.
Stage 1: Initializing cross-modality alignment Herein,
we aim to warm up the framework to the two modalities and

therefore train the components responsible for the align-
ment between image and LLM token spaces using the loss
2. Specifically, we optimize 1 the Q-former, 2 the projec-
tion layer; and 3 the language modeling head, which also
ensures seamless vision-conditioned text generation. Low-
Rank Adaptation [21] is employed, resulting in a total of
109M trainable parameters amounting merely to ↑ 1.4% of
the total number of model parameters.
Stage 2: Refining multimodal representations We min-
imally LoRA-finetune specific target modules, which in-
clude key projection layers in the LLM, in addition to the
parameters tuned in stage 1, thereby further conditioning
for the unification of multimodal representation. This stage
indulges 200M parameters ( ↑ 2.5% of the total). The train-
ing procedure encompasses eight multimodal retrieval tasks
for which we craft customized instructions, specific to the
task of retrieval, as presented in the Supplementary, Table
10. Each task describes a specific retrieval scenario across
the image (I) and text (T ) modalities, with 8 varieties in
the types of queries and targets.

4.2. Datasets
Training: We use a combination of the LAION 400M
[53] and CC3M [54] datasets, in addition to the recently cu-
rated M-BEIR benchmark datasets [60]. M-BEIR integrates
ten diverse datasets, spanning domains such as everyday im-
agery, fashion, Wikipedia entries, and news articles, suited
for retrieval using the human-authored instructions consist-
ing of 1.5 mill. queries and a pool of 5.6 mil. retrieval
candidates. We use weighted sampling during training us-
ing dataset sizes, therefore mitigating biases and overfitting.

Evaluation: We assess the model under a variety of sce-
narios. Evaluations over the M-BEIR for multimodal
multi-task retrieval, cover eight tasks as defined in Supple-
mentary 8. We follow the standard retrieval evaluation met-
ric, Recall@5 and Recall@10 in keeping with the dataset
specific practices. Additionally, we assess zero-shot classi-
fication performance using the “Image Classification in the
Wild” (ICinW) benchmark [32], consisting of 20 datasets
designed to assess models’ ability towards categorization of
images captured in diverse and real-world conditions.

Furthermore, we highlight the benefits of leveraging
pretrained LLMs by evaluating over zero-shot composi-
tionality prediction using the SUGARCREPE [20] and
WINOGROUND [58] datasets. Specifically, SUGARCREPE
assesses models for image-caption matching, where the task
is to predict the correct caption or image among distrac-
tors with subtle compositional changes in concepts like
Replace, Swap, and Add object, attribute, and rela-
tion. Similarly, the WINOGROUND dataset evaluates visio-
linguistic compositional reasoning, requiring matching of
images to the right captions among the others with identical
words but in different orders. Prediction accuracies (top-1
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Abstract

We present Multi-Modal Multi-Task Unified Embedding

Model (M3T-UEM), a framework that advances vision-

language matching and retrieval by leveraging a large lan-

guage model (LLM) backbone. While concurrent LLM-

based approaches have demonstrated impressive capabil-

ities in multimodal and multitask scenarios; our work in-

troduces novel mechanisms for task-adaptive learning and

embedding extraction that further enhance the potential of

LLM-based retrieval systems. Our key technical contri-

bution lies in the development of a task-aware contrastive

learning framework with an automated Bayesian weighing

mechanism. This approach provides a principled way to

balance multiple tasks during training, departing from con-

ventional contrastive learning strategies. We further en-

hance the framework through a multiple token summariza-

tion strategy and an auxiliary language modeling objec-

tive, which together significantly improve retrieval perfor-

mance. Comprehensive experiments on M-BEIR and ICinW

benchmarks demonstrate the effectiveness of M3T-UEM,

showing competitive or superior performance compared to

both traditional encoder-based methods and recent LLM-

based approaches. Furthermore, we demonstrate particu-

lar strengths in handling compositional conceptual changes

and multilingual scenarios owing to the incorporation of an

LLM backbone where the method drastically outperforms

CLIP in zero-shot settings, often by orders of magnitude. *

1. Introduction
In the digital era, Large Multi-modal Models (LMMs), typ-
ically built upon LLMs, have become widespread due to
their advanced reasoning capabilities. Their applications
range from generating contextual image-based dialogues
[2, 38, 44] to video understanding [17] and object seg-
mentation [30]. Simultaneously, multimodal retrieval has
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Figure 3. The proposed task-aware contrastive loss: Two essential
weights are introduced to assess the positive and negative pair sim-
ilarity scores. While the task-aware weights (a) combat the inter-
task variances, e.g. to reduce the pair similarity score if the target
modality is incorrect , the pair-positiveness-aware weights (b) ac-
count for intra-task semantic similarities between queries and tar-
gets and adjust the scale of a similarity scores accordingly.

task index, e.g,, ω(vi) = 1 means vi belongs to the first
task. For notation simplicity, we denote ω(vi) or ω(ti)
as ωi. Then, we associate each task pair (i, j) with a ran-
dom weight wi,j denoting the correlation/importance of the
two task, i.e., if the correlation is high, data from one task
should be paid more attention in constructing the contrastive
loss. To this end, a task-aware contrastive loss is defined as
Lcon ↭ → 1
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that will be automatically inferred during training. Addi-
tionally, inspired by [6, 48], we incorporate sample-specific
weights w̃ik for each positive-negative pair (vi, tk) for
more flexible modeling, and formulate our final multi-task
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Remark 2 Compared to recent work using a sample-wise

weighting scheme [48], our approach with loss in (1) 1)

simplifies the original loss by consolidating redundant pos-

itive weights wωi,ωi into the negative weights, enhancing

‡We consider a single positive pair in each Li here. Derivations to
handle multiple positive pairs are given in Supplementary 7.

training stability; and 2) integrates both task-wise and

sample-wise adaptations, making it the first to introduce

such modeling in contrastive learning, thus offering greater

generalizability and improved performance.

By incorporating these task-aware and sample-specific
weights, our multi-task loss automatically balances data
from different tasks (through task-aware weights w̄ωi,ωk )
and handles potential noisy positive-negative data pairs (via
pairwise weights w̃ik). This capability is crucial for learn-
ing robust multimodal representations in multi-task settings,
a challenge not yet addressed in existing work. Finally,
our LLM backbone naturally incorporates an autoregressive
language-model loss, Llm, which serves as a regularizer to
balance both embedding and generation qualities and our
final loss for M3T-UEM is given by

Ltotal = Lmcon + εLlm , (2)
where ε is a hyperparameter set to 0.1 in our experiments.

Optimization Optimizing our task-aware contrastive loss
(Eq. (1)) presents two main challenges: 1) The optimal so-
lution tends toward a degenerate case where all weights
w̄ωi,ωk and w̃ik are zero, undesirable because it disregards
negative data pairs, making them contribute nothing to the
learning process; 2) Direct optimization of all weights via
stochastic gradient descent is infeasible, as the number of
weights grows quadratically with respect to the data size.
Fortunately, we can leverage the stochastic expectation-
maximization (EM) approach [46], to alternatively sample
the weights given the LLM, and optimize the LLM back-
bone based on Eq. (1) using the sampled weights. We there-
fore reformulate the loss in Eq. (1) as a likelihood func-
tion in a probabilistic framework and introduce appropri-
ate priors for the weights to enable efficient posterior in-
ference. We then augment the likelihood in Eq. (1) with
auxiliary random variables {ui}Ni=1 and using the Gamma
identity [6], we can express Eq. (1) as a joint distribution
over the data D and auxiliary variables ui, conditioned on
the random weights {w̄ωi,ωk , w̃ik}, as follows:

p(D, {ui}|{w̄ωi,ωk}, {w̃ik}) ↑ s
+
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We introduce Gamma priors§ for the weights {w̄ωi,ωk , w̃ik},
defined as p(w̄ωi,ωk) = Gamma(aω , bω ) and p(w̃ik) =
Gamma(a, b) . This allows the posterior distributions
p(w̄ωi,ωk |D, ui) and p(w̃ik|D, ui) to also follow Gamma
distributions that can be directly sampled from:

p(w̄ωi,ωk |D, {ui}) (3)

=Gamma(1 + aω , bω +
∑

i↑

∑

k↑

1ωi↑=ωi1ωk↑=ωkui↑s
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→
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§We use the shape-rate parameterization for the Gamma distribution.
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training stability; and 2) integrates both task-wise and

sample-wise adaptations, making it the first to introduce

such modeling in contrastive learning, thus offering greater

generalizability and improved performance.

By incorporating these task-aware and sample-specific
weights, our multi-task loss automatically balances data
from different tasks (through task-aware weights w̄ωi,ωk )
and handles potential noisy positive-negative data pairs (via
pairwise weights w̃ik). This capability is crucial for learn-
ing robust multimodal representations in multi-task settings,
a challenge not yet addressed in existing work. Finally,
our LLM backbone naturally incorporates an autoregressive
language-model loss, Llm, which serves as a regularizer to
balance both embedding and generation qualities and our
final loss for M3T-UEM is given by

Ltotal = Lmcon + εLlm , (2)
where ε is a hyperparameter set to 0.1 in our experiments.

Optimization Optimizing our task-aware contrastive loss
(Eq. (1)) presents two main challenges: 1) The optimal so-
lution tends toward a degenerate case where all weights
w̄ωi,ωk and w̃ik are zero, undesirable because it disregards
negative data pairs, making them contribute nothing to the
learning process; 2) Direct optimization of all weights via
stochastic gradient descent is infeasible, as the number of
weights grows quadratically with respect to the data size.
Fortunately, we can leverage the stochastic expectation-
maximization (EM) approach [46], to alternatively sample
the weights given the LLM, and optimize the LLM back-
bone based on Eq. (1) using the sampled weights. We there-
fore reformulate the loss in Eq. (1) as a likelihood func-
tion in a probabilistic framework and introduce appropri-
ate priors for the weights to enable efficient posterior in-
ference. We then augment the likelihood in Eq. (1) with
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Introducing ui , we have the joint

And thereafter, the posteriors for w𝜏 , ui  are

Table 5. Multilingual Zero-Shot Retrieval: Recall@5 for
image-text retrievals on the Flickr8k [18], Flickr30k [64], and
XTD200 [1] datasets in different languages.

M3T-UEM ViT-g-14Dataset Tq → It Iq → Tt Tq → It Iq → Tt
Language

91.2 97.8 90.4 96.2 EnglishFlickr8k 14.6 39.0 1.0 3.7 Chinese
93.2 98.5 91.6 98.3 EnglishFlickr30k 14.9 47.5 0.9 4.8 Chinese

93.7 94.8 87.9 89.6 English
43.4 51.7 9.8 16.1 JapaneseXTD200
81.5 85.2 26.6 37.1 Swedish

Average 72.9 77.2 41.4 47.6 All

Table 6. Zero-Shot Retrieval on Flickr 30K: Recall@5 evalu-
ation using the Flickr30k [64]. Closely matching model sizes for
each method are chosen.

Model Tq → It Iq → Tt Average ↑

TIGeR [49] 91.8 – –
E5V [27] 82.8 90.4 86.6
VLM2VEC [28] 92.8 98.7 95.7
MM-GEM [42] 92.6 99.0 95.8
LLM2CLIP [23] 83.8 93.9 88.9
MagicLens [68] 93.7 97.7 95.7
M3T-UEM 93.2 98.5 95.9

Table 7. Ablations: Retrieval performance average over M-
BEIR benchmark ablating various design components. Differ-
ences against the best variant are reported in red.

TA Loss Two Stage 16xEOS LM-Loss Retrieval Avg.

! ! ! ! 38.0

✁ ! ! ! 37.4 (→0.6)

! ✁ ! ! 35.7 (→2.3)

! ! ✁ ! 37.6 (→0.3)

! ! ! ✁ 37.9 (→0.1)

4.4. Ablation Study
Table 7 illustrates the ablations for the key design choices
on retrieval performance, averaged over the M-BEIR bench-
mark. For this study we conduct smaller scale ablations and
train the stage 2 model for 5k steps. For the one vs two-
stage test, we equate the computational expense (FLOPs)
accounting for the difference in trainable parameters (109M
vs 200M), and train the single-stage model for 8.8k steps
leading to C ↓ 1766 FLOPs in both cases. We witness a
marked drop in performance with this setup, underscoring
the critical need for alignment of the vision-based modules
with the LLM. Additionally, we find that incorporation of
multiple EOS tokens endows the architecture with enhanced
representations whilst using only one leads to a drop of 0.3
in retrieval performance, highlighting the merits of this de-
sign aspect where multiple tasks with interleaving modali-

ties are involved. A more detailed ablation is provided in
supplementary 10, where we further explore this aspect of
our method. Task awareness additionally lends a perfor-
mance boost of 0.6% under these settings. Furthermore, we
find that incorporation of Llm leads to marginal differences
in performance, benefiting the method by 0.1 points, cor-
roborating similar recent findings [42].

4.5. Inference Latency vs Performance
An evolving trend of the utility of LLMs towards numerous
applications has revived the questions of efficiency vs per-
formance. In Table 8, we explore this trade off by compar-
ing against the comparable model size of VLM2VEC (Phi-
3.5V) ¶ [28] in addition to the CLIP-based models – ViT-g-
14 (our vision encoder choice in Table 1). We use a single
A-100 GPU with a batch size of 64. We also analyze the
average zero-shot classification accuracy. We indeed realize
the performance vs throughput tradeoffs with the ViT mod-
els being more efficient. However, coupled with the supe-
rior average performance of M3T-UEM, the multi-task ca-
pabilities and the inherent benefits of LLMs as explored in
sections 4.3.3 and 4.3.4, in addition to a growing literature
in throughput optimization of LLMs [19, 56], we project an
optimistic trend towards adaptation of LLMs for retrieval.
Table 8. Efficiency vs Performance. Throughput, accuracy and
memory usage using a single A-100 GPU and a batch size of 64.

Model Throughput (Samples/sec) ↑ Avg. Acc. ↑ Memory ↔
CIFAR-100 SUN397 Country211 % MB

ViT-g-14 20.1 19.5 19.9 59.2 8,573
VLM2VEC 16.4 15.5 16.2 38.5 35,248
M3TUEM 18.9 16.9 17.1 62.4 21,778

5. Conclusion
We introduced M3T-UEM, a multi-modal multi-task em-
bedding framework that enhances multi-modal retrieval and
classification by employing a pretrained LLM as a uni-
fied backbone across vision-language modalities. Our ap-
proach streamlines the adaptation of pretrained LLMs for
multi-modal embedding applications, establishing a foun-
dation for future research in modality integration. The pro-
posed task-aware contrastive loss mechanism significantly
improves M3T-UEM’s capability to handle complex multi-
modal matching scenarios. Through comprehensive empir-
ical evaluation, M3T-UEM demonstrates consistent perfor-
mance gains over CLIP-based and LMM embedding ap-
proaches across diverse tasks. These results establish a new
benchmark in unified, large-scale multi-modal representa-
tion learning and open promising research in multi-modal
task-aware learning, including potential extensions to addi-
tional modalities such as audio.

¶Evaluated using the official repo. The consumption patterns could be
attributed to a larger image size (336→ 336) used in the Phi-3.5V model.


