

Is Meta-Learning Out? Rethinking Unsupervised Few-Shot Classification with Limited Entropy

hustgyc@hust.edu.cn

Background: Whole class training(WCT) outperform meta-learning in few-shot classification tasks

Question: Is meta-learning still matter?

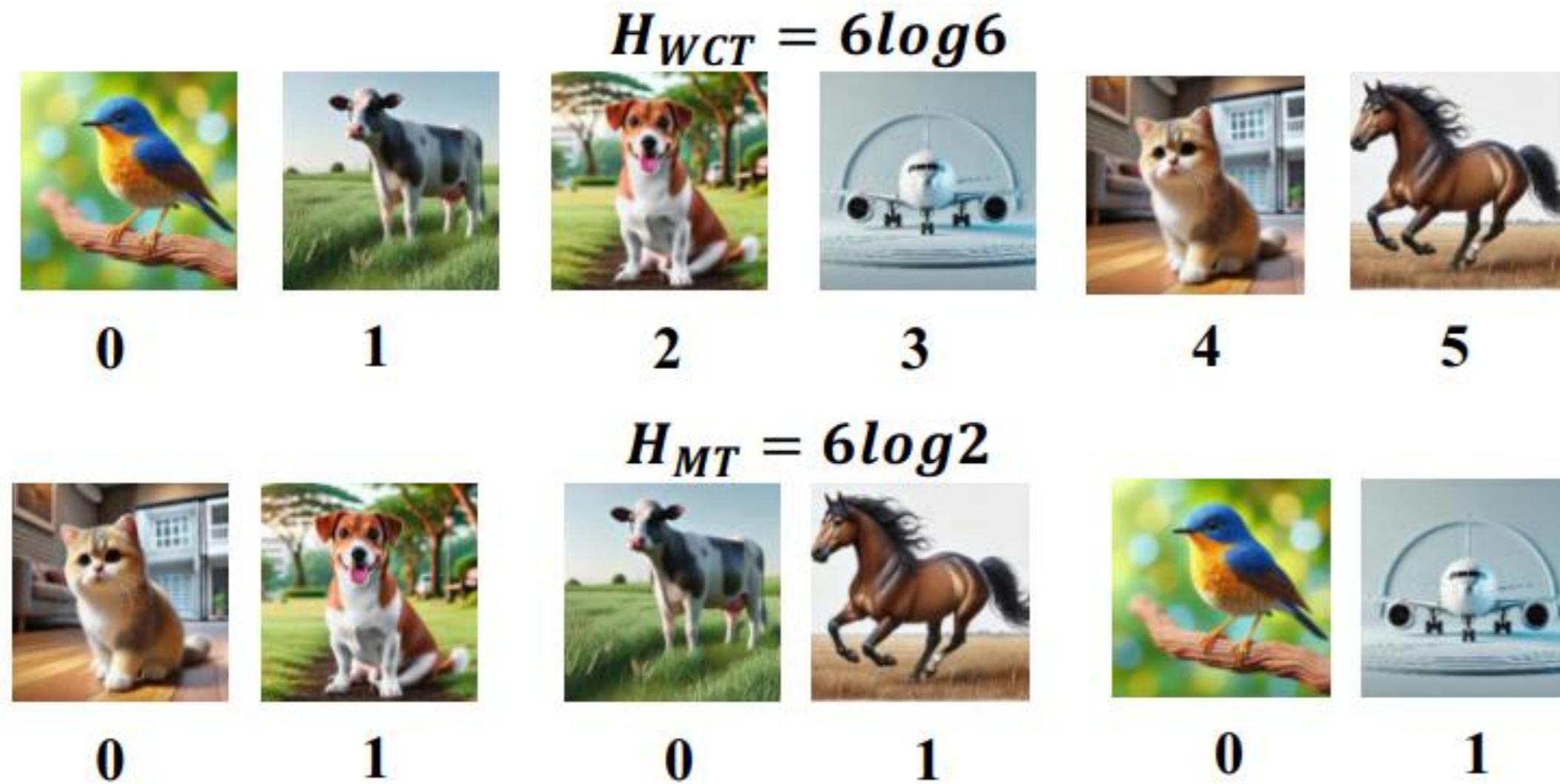


Figure 1. Unfair comparison under the conventional supervised setting. The annotation cost varies across different training methods.

H represents the information entropy.

Unfair comparison:

- WCT requires more category distinctions \rightarrow higher entropy
- Meta-training uses limited task categories \rightarrow lower entropy

Motivation:

Under limited entropy, does meta-learning still better?

Contribution 1: Entropy-Limited Supervision

Lemma 1. Let the sample volume of the dataset be m , the number of classes be C , the sample number per class be balanced, and the entropy consumed by annotation be H . Then, the expectation of correct labeled samples, i.e., m' , is given by

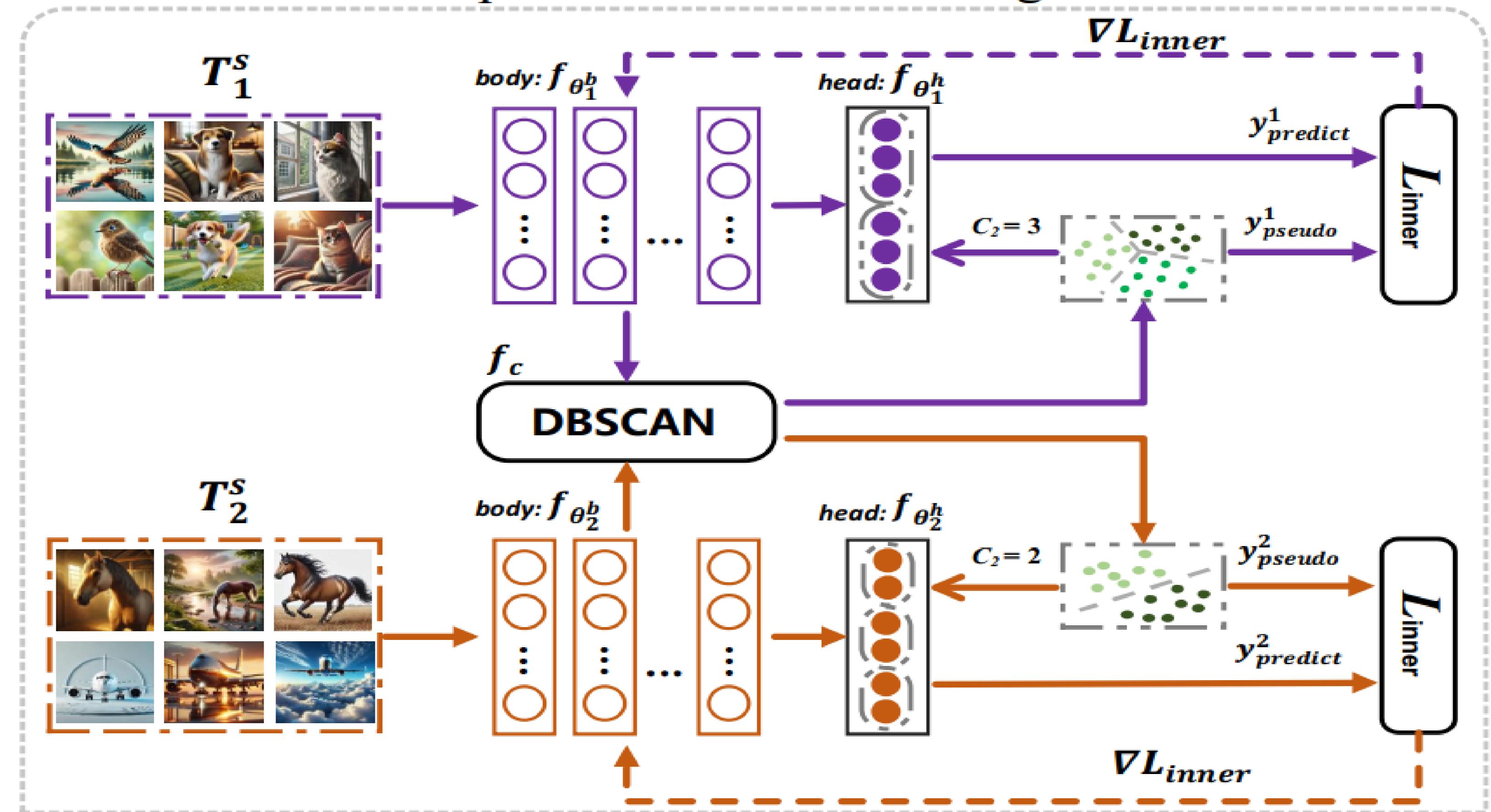
$$m' = \frac{m}{C} e^{\frac{H}{m}} \quad \text{s.t. } H \in [0, m \log C]. \quad (1)$$

Corollary 1. Let the base-level stability $\beta \sim o(\sqrt{1/m})$, the meta-level stability $\tilde{\beta} \sim o(\sqrt{1/n})$, and the entropy resource H be equal for each algorithm. Then, the meta-learning algorithm \mathcal{A} has a tighter generalization error upper bound than the single-task learning algorithm A when

$$C_2^2 \cdot k < C_1. \quad (4)$$

Contribution 2: MINO

Inner-loop: Base-model Training Process



Outer-loop: Meta-model Training Process

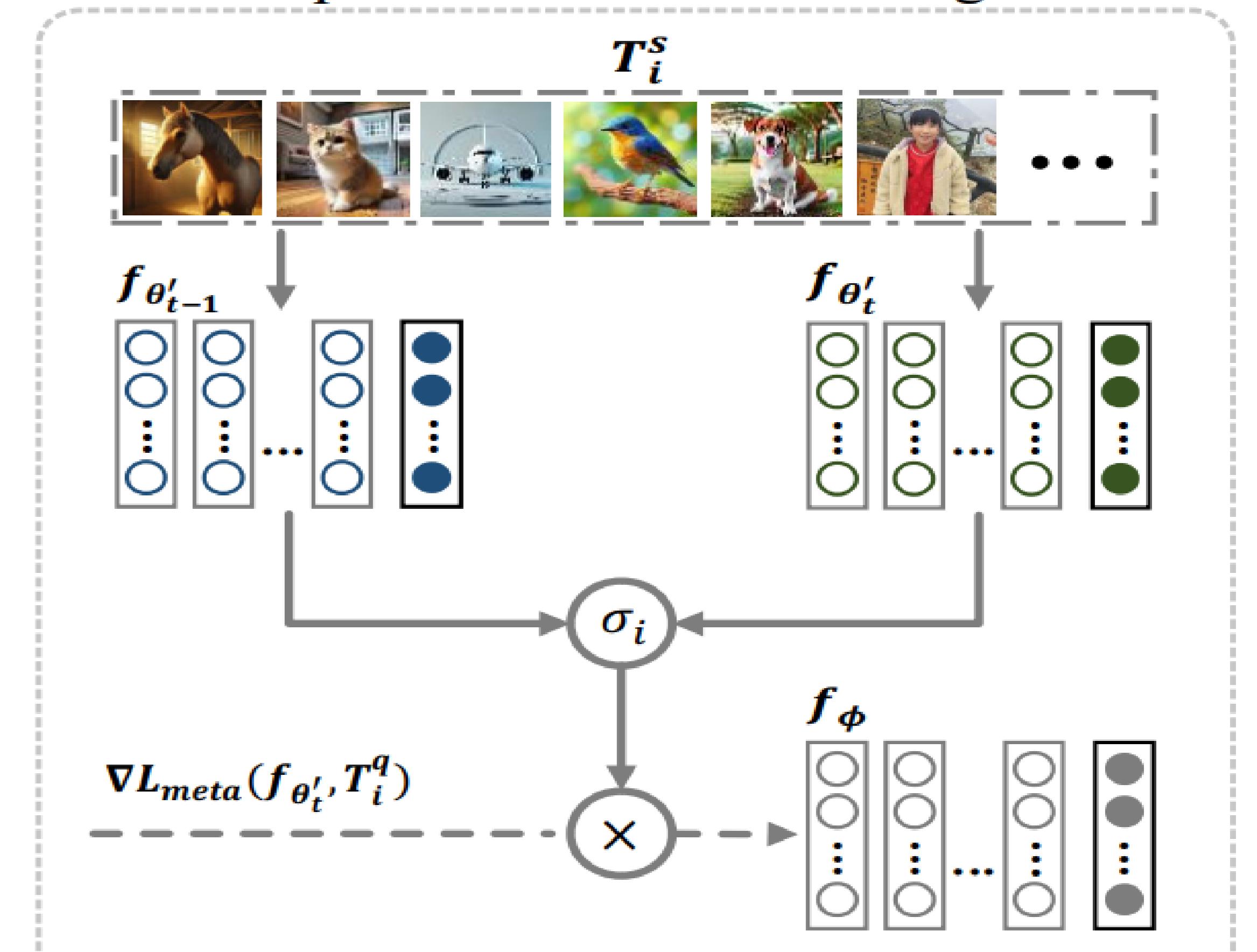
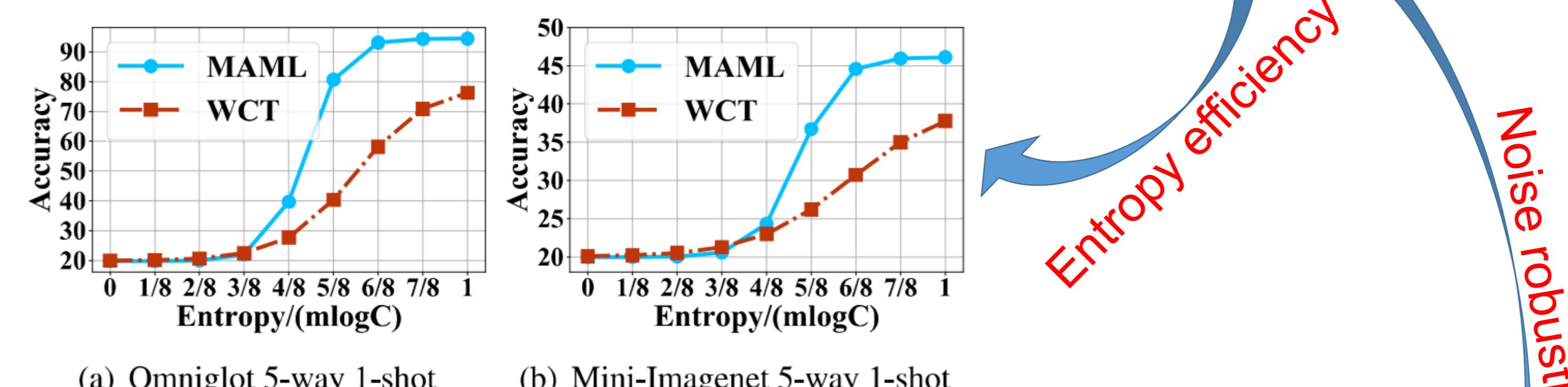


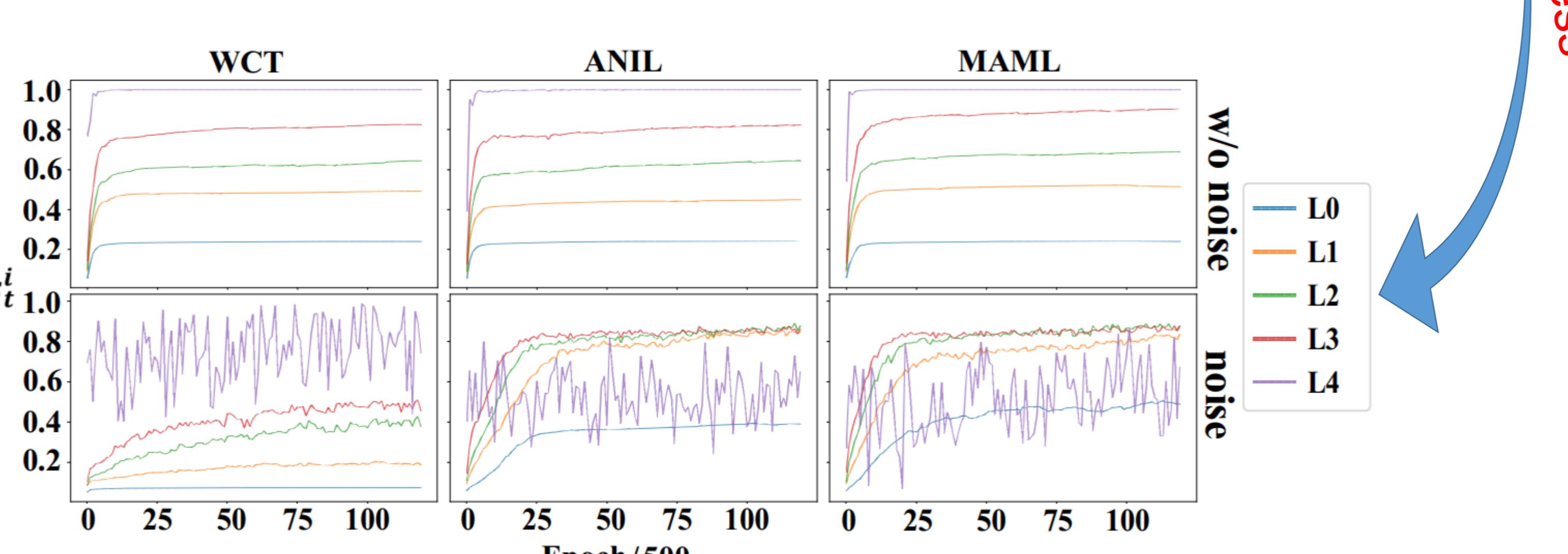
Figure 5. Overview of MINO. (1) The left part shows the process of inner-loop. The base learner computes y_{pseudo} and $y_{predict}$ by DBSCAN f_c and a dynamic head $f_{\theta_i^h}$, respectively. Then, their cross-entropy is backpropagated. We apply a grouping classification technique at the head, i.e., $f_{\theta_i^h}$, to handle tasks with different numbers of clusters. (2) The right part shows the process of outer-loop. The meta gradient, i.e., $\nabla L_{meta}(f_{\theta_t'}, T_i^q)$, is regulated by the meta-scaler, i.e., σ_i , where σ_i is an adaptive scaler that operates based on the representation stability of $f_{\theta_t'}$ to ensure noise robustness.

Theoretical and Experimental results:

- Entropy-Limited Supervision Bridges the gap between supervised and unsupervised settings.
- Under limited entropy, meta-learning is better.



Better accuracy



Method	CIFAR-10	CIFAR-100	STL-10	ImageNet	Tiny-MINIST	DomainNet
DeepCluster [2]	63.02 ± 1.14	35.05 ± 1.11	52.21 ± 1.42	24.83 ± 0.95	78.63 ± 1.68	18.09 ± 0.88
IIC [18]	64.05 ± 1.02	36.23 ± 1.27	53.78 ± 1.30	25.07 ± 0.88	79.21 ± 1.54	18.18 ± 0.74
MAE [14]	68.83 ± 1.19	39.11 ± 1.52	56.19 ± 1.47	27.32 ± 1.14	81.03 ± 1.36	20.53 ± 1.03
NVAE [35]	67.43 ± 1.37	38.29 ± 1.45	55.78 ± 1.22	27.21 ± 0.98	81.52 ± 1.61	19.84 ± 0.79
BiGAN [9]	67.61 ± 1.24	38.78 ± 1.19	55.24 ± 1.34	26.85 ± 1.07	80.09 ± 1.27	19.23 ± 0.95
ReSSL [41]	70.27 ± 1.15	41.48 ± 1.60	58.52 ± 1.31	31.25 ± 1.13	83.17 ± 1.24	21.42 ± 0.92
Meta-GMVAE [23]	71.73 ± 1.28	41.26 ± 1.02	58.69 ± 1.51	30.08 ± 1.57	84.65 ± 1.03	21.06 ± 1.37
MINO-kmeans	69.06 ± 1.34	39.55 ± 1.27	57.05 ± 1.49	29.89 ± 1.83	83.15 ± 1.01	19.68 ± 1.16
MINO	73.15 ± 1.09	43.34 ± 1.41	60.74 ± 1.35	31.12 ± 1.06	86.45 ± 1.28	22.68 ± 0.91

Omniglot

(way, shot)	(5, 1)	(5, 5)	(20, 1)	(20, 5)	(5, 1)
UMTRA [21]	82.97 ± 0.68	94.84 ± 0.60	73.51 ± 0.53	91.22 ± 0.59	39.14 ± 1.02
CACTUS-MA-DC [15]	67.98 ± 0.80	87.07 ± 0.63	47.48 ± 0.59	72.21 ± 0.54	39.11 ± 1.08
CACTUS-Pr-DC [15]	67.08 ± 0.72	82.97 ± 0.64	46.32 ± 0.51	65.75 ± 0.62	38.47 ± 1.14
CACTUS-MA-Bi [15]	57.84 ± 0.75	78.12 ± 0.67	34.98 ± 0.57	57.75 ± 0.58	36.13 ± 1.07
CACTUS-Pr-Bi [15]	53.58 ± 0.65	71.21 ± 0.68	32.79 ± 0.53	50.12 ± 0.51	36.05 ± 1.06
PsCo [16]	93.25 ± 0.59	97.56 ± 0.34	82.06 ± 0.43	91.01 ± 0.45	42.90 ± 0.95
Meta-GMVAE [23]	93.81 ± 0.75	96.85 ± 0.50	81.29 ± 0.62	89.00 ± 0.51	41.78 ± 1.13
MINO	93.75 ± 0.46	97.71 ± 0.37	83.57 ± 0.41	94.69 ± 0.40	44.73 ± 1.01
MAML (supervised) [13]	94.46	98.83	84.6	96.29	46.81