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1. Background and Motivation



1.1 - Object Detectors

e Obiject detection is the task of locating objects on images.
o Input: Image.
o Output: class labels and bounding-box of detected objects.

Object
Detection

Figure 1. Object detection task. Image taken from [1].

[1] Li et al. CS231n: Convolutional Neural Networks for Visual Recognition (Lecture 11). accessed 22 March 2022, http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf.



1.2 - Vision-Language Models (VLMs)

e AVLM is composed of an image encoder and a text encoder.

(1) Contrastive pre-training (2) Create dataset classifier from label text

(3) Use for zero-shot prediction
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Figure 2. CLIP framework [2].

[2] Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. PmLR, 2021.



1.3 - What are VL-ODs?

e Vision-Language Object Detectors (VL-ODs):
o They have a text encoder, a vision encoder, and a fusion head.
o Advantages: open-vocabulary, zero-shot detection.
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Figure 3. VL-OD illustration.



1.4 - Modality Adaptation

e Modality adaptation uses detection feedback for image translation.
e Adapts detectors for different input distributions.

Adapting to New Modality Pre-trained

Modality
Adapter

<= SN

Original Translated

Input Input Detector

Detector Feedback

Figure 4. Modality Adaptation framework.



2. Related Works



2.1 - Vision-Language Object Detectors

Training: Online Vocabulary Vocabulary Embeddings Region-Text Matching
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Figure 5. Yolo-World architecture [3].
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Figure 6. Grounding DINO architecture [4].

e YOLO-World is pre-trained on large-scale data. It re-parameterizes vocabulary embeddings as parameters into the model and

achieve superior inference speed.

e  Grounding DINO effectively fuse language and vision modalities, it proposes a tight fusion solution.

[3] Cheng, Tianheng, et al. "Yolo-world: Real-time open-vocabulary object detection." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024.
[4] Liu, Shilong, et al. "Grounding dino: Marrying dino with grounded pre-training for open-set object detection." European conference on computer vision. Cham: Springer Nature Switzerland, 2024.



2.2 - Modality Adaptation

e HalluciDet leverages RGB detector knowledge to guide IR-to-RGB translation for
improved detection with a task-driven hallucination loss.

e ModTr adapts new-modality inputs (e.g. IR) via a small translator network so the original
RGB-trained detector can be reused unchanged. It preserves the original detector’s.
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Figure 7. HalluciDet framework [5]. Figure 8. ModTr framework [6].

[5] Medeiros, Heitor Rapela, et al. "HalluciDet: hallucinating RGB modality for person detection through privileged information." Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision. 2024. 10
[6] Medeiros, Heitor Rapela, et al. "Modality translation for object detection adaptation without forgetting prior knowledge." European Conference on Computer Vision. Cham: Springer Nature Switzerland,

2024.



2.3 - Different strategies to adapt to new modalities

e Our work investigates how to efficiently adapt VL-ODs.

e VL-ODs suffer under modality shift:
o IR, depth, event-based, LIiDAR.
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Figure 9. Different adaptation approaches for new modalities.
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2.3 - Different strategies to adapt to new modalities

e Full fine-tuning VL-ODs is too costly.
Previous methods for modality adaptation did not investigate VL-ODs, and visual prompt

strategies focused on the downstream classification task.
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Figure 9. Different adaptation approaches for new modalities. 12



3. ModPrompt



3.1 - ModPrompt - Main Contributions

e ModPrompt translates inputs at the pixel level for better modality alignment while
preserving encoder knowledge via a backbone-agnostic design.

e It overcomes the failure of traditional pixel-level prompts, yielding superior
cross-modality detection.

e ModPrompt achieves near fine-tuning performance across diverse modalities
while retaining zero-shot cability.
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3.2 - ModPrompt
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e calculate the ModPrompt loss
and update its parameters.
e ModPrompt loss is defined as
follows:
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Figure 10. Our Proposed: ModPrompt.
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4. Results



4.1 - Datasets and Evaluation

e Datasets: LLVIP [7], FLIR [8] and NYUv2 [9].

FLIR
NYUv2

e Evaluation: AP detection performance.

[7] Jia, Xinyu, et al. "LLVIP: A Visible-infrared Paired Dataset for Low-light Vision." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
[8] FLIR Thermal Dataset. Accessed: Jan. 23, 2025. [Online]. Available: https://www.flir.com/oem/adas/adas-dataset-form
[9] Silberman, Nathan, et al. "Indoor segmentation and support inference from rgbd images." European conference on computer vision. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
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https://www.flir.com/oem/adas/adas-dataset-form

4.2 - Comparison with Visual Prompt Strategies

Dataset

LLVIP - IR

Method

Zero-Shot (ZS)
Head Finetuning (HFT)
Full Finetuning (FT)

Visual Prompt (Fixed)
Visual Prompt (Random)
Visual Prompt (Padding)
Visual Prompt (WM)
Visual Prompt (WM,,5)

ModPrompt (Ours)

AP;’)()

81.00 = 0.00
93.57 £ 0.05
97.43 £ 0.05

70.30 +7.89
60.13 +0.29
79.87 £ 1.00
82.00 £ 1.59
74.10 £ 0.43

92.80 + 0.29

YOLO-World
AP-5

57.80 £ 0.00
73.83 £0.19
1793021

45.67 £6.97
38.73 £0.17
51.77 £ 0.90
53.90 £ 1.06
46.47 £ 0.62

70.73 + 1.02

AP

53.20 £ 0.00
64.80 = 0.08
67.73 £0.09

43.53+5.79
36.87 £0.12
49.30+£0.83
50.90 = 0.94
4470 £0.22

62.87 + 0.63

AP-’)()

85.50 £ 0.00
87.53 +£0.06
QL0381

83.83 £ 0.06
83.87 £ 0.06
82.73 £ 0.31
69.57 £0.93
69.87 £ 1.12

93.13 + 0.15

Grounding DINO

AP

62.70 = 0.00
65.57 £0.23
79.93 £ 0.83

61.53 £0.23
61.37 £ 0.06
60.00 + 0.35
41.37+1.27
41.77 £ 1.30

67.17 + 0.78

AP

56.50 £ 0.00
58.10+0.20
67.83 £ 0.96

55.13£0.15
55.03 £ 0.06
55.13+£0.15
40.77 = 0.87
41.13£0.96

60.10 + 0.50

Table 1. Detection performance (APs) for YOLO-World and

Grounding DINO for LLVIP-IR.
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4.3 - Comparison with SOTA Modality Adaptation

e ModPrompt has better

68
= localization quality.
62
60
58

56 e Improves APso, AP:s, and

54

o | AP over HalluciDet

and ModTr.

\,\a\\UC‘\DetModT(N\odP\'Ompt Ha\\ud\oe‘MOdT‘;\’\odp\'ompt

Figure 11. Detection performance on LLVIP for different SOTA
Modality Translation OD methods.



4.4 - Knowledge Preservation

AP50 on LLVIP-IR and COCO (YOLO-World)
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Figure 12. AP50 of YOLO-World on LLVIP-IR and COCO data for
knowledge preservation.
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4.5 - Visual Prompt Ablation

NYU,; - Depth
AP . AP

LLVIP - IR

AP AP Method Variation

Method Variation

30 04.67+0.05 03.07+£0.05 0290+ 0.00
03.43+£0.05 02.00+0.08 02.10+0.00
02.63+£0.05 02.53+0.05

01.53+£0.17 00.77+0.12  00.87 £0.12
03.97+0.05 02.50+0.00 02.43+0.05
00.37+0.12  00.10+£0.08  00.17 £0.05
3537+0.12  25.20+0.24 23.27+0.17

3717 +£0.57 27.50+0.64 2493 +0.50

30 61.60+0.75 39.93+0.52
70.30+£7.89  45.67 £6.97
60.13+£0.29 38.73+0.17
56.27+046 33.73+£0.62 33.13+0.
79.87+1.00 51.77+£090 49.30+0.83
39.53 £2.36 15.90 + 1.02 19.07 £ 1.18
92.80+0.29 70.73+1.02 62.87 +£0.63
91.03+0.12 6840+1.10 61.43+0.58

Fixed Fixed

Random Random

Padding Padding

ModPrompt ModPrompt

a) LLVIP - IR b) NYUv2 - Depth

Table 2. Comparison of visual prompt strategies: fixed, random, padding,
and ModPrompt. a) LLVIP and b) NYUv2 - Depth.



4.6 - Training and Test Speed

Training Time vs APsq
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Figure 13. Training Time vs.
Detection Performance.
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Figure 14. Inference Speed vs.
Detection Performance.
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4.7 - Qualitative Results

(b) Zero-Shot (c) Visual Prompt (d) ModPrompt (Ours)

— -

Figure 15. Detection over different methods.
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5. Conclusion
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5 - Conclusion

@ We propose ModPrompt, a novel method that adapts VL-ODs across modalities with
conditional visual prompts.

@ ModPrompt preserves ZS, is efficient (<5% params), and is competitive with FT. Our
residual tune text embeddings are toggleable at inference.

Our technique outperformed competitors across different visual modalities, such as IR,
Depth, Event-based, and LIDAR.
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