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Parametric Shadow Control for Portrait Generation in Text-to-Image Diffusion Models

PEDolb
UNIVZRSITY oF Haoming Cai, Tsung-Wei Huang, Shiv Gehlot, Brandon Y. Feng, Sachin Shah, Guan-Ming Su, Christopher Metzler
@ MARYLAND | University of Maryland, Dolby Labs, MIT

. . i Application & Capability
Goal — Enable fine-grained shadow control for Text-2-Image generation

Background — Existing editing methods are data-hungry and generalize poorly to generated images
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Baselines suffer from identity shift and inaccurate relighting dlrectlon on generated images
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Key Ideas — Leverage the rich Ilghtmg priors embedded in the pre-trained diffusion models
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User Interface Diffusion Model with Shadow Control Shadow Director I 3D Position of Directional
Light Source Provided by User
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Training: Train a module to estimate shadow, depth, and identity from noisy latent features | - T . : . ,
Inference: Iteratively optimize latent features until the desired shadow emerges Given the user-specified light location (XYZ), the desired shadow ldentity Constraint Loss

User Inputs : Text Prompt & Shadow Strength & Directional Light Location (XY,Z) or Shadow Binary Mask map Is computed via ray casting on the estimated depth.



