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Problem and Contribution The overall framework of our approach
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Figure 2. The overall framework of our approach. First, we define the neighborhood of each pixel and calculate the differences between

pixel values within the neighborhood. Based on these differences, the pixels are assigned to different distance intervals, forming the
initial distance structure. The 1image, containing this distance information, 1s then mput mto the model, which optimizes by calculating
and adjusting each pixel's value. Using the adjusted pixel values, we adaptively compute distance and similarity constraints, updating
* We optimize the dynamic system using a decentralized multi-agent approach, enabling the neighborhood’s distance structure to optimize the direction of pixel adjustments. Through multiple iterations, with each update of the

more flexible, adaptive interactions between agents and improving the overall etficiency neighborhood constraints, the model progressively refines pixel enhancement, ultimately achieving more precise image enhancement.
of the system.

Contributions:
 Drawing inspiration from the dynamic behaviors of biological swarms, we have developed
an image enhancement method based on swarm dynamics, offering fresh ideas and insights.

Experiments & Results

Quantitative Comparisons. Qualitative Comparison.
Table 1. Quantitative comparison on the LOL(v] [3Y] and v2 [42]) and LSRW[5] datasets in terms of PSNR T and SSIM 7. The best results
for unsupervised methods are bolded, respectively.
Dataset Train set LOL-vl LOL-v2-real LOL-v2-syn Nikon Huawei
Metrics PSNR SSIM | PSNR SSIM | PSNR SS5IM | PSNR SSIM | PSNR  SSIM
RetinexNet [39] LOL 16.77 0.46 17.71 0.65 17.13 0.79 15.41 0.40 16.98 0.48 5
KinD[45] LOL 17.64 0.77 14.74 0.64 13.29 0.58 16.08 0.39 16.48 0.57
SL | LLFormer|[35] LOL 23.65 .82 18.94 (.86 17.72 0.71 19.03 (.80 19.93 0.81 (a) Input (b) RetinexNet (c) P dll'LE (d) EnghtenGAN (e) TBEFN
Retinexformer| | | LOL+ 25.16 .84 22.80 0.84 25.67 0.93 21.19 0.69 22.52 0.77 ' m -
DiffLLL[12] LOL+ 26.34 (.85 28.86 0.87 22.59 0.77 19.28 0.55 18.58 0.81
EnlightenGAN] 14] Mixed 17.58 (.65 18.67 0.68 16.57 0.73 17.10 0.47 17.03 0.51
Zero-DCE| 7] Mixed 14.86 (.56 18.06 0.60 15.83 0.46 15.86 0.44 16.79 0.60
Zero-DCE++[ 1] Mixed 14.57 0.52 18.76 0.63 15.54 .58 18.08 0.71 16.03 0.50
UL SCI|22 LOL+ 14.78 0.52 17.30 0.55 16.73 0.60 15.01 0.48 15.77 0.48 <
RUAS|[20] LOL 18.23 0.72 18.37 0.72 16.55 .65 14.27 0.46 13.76 0.51
PairLLIE[4] Mixed 19.51 0.74 19.88 0.73 18.92 0.71 17.60 0.50 19.41 0.73
CUE[46] Mixed 21.67 0.77 20.82 0.75 19.10 0.73 18.93 0.61 20.31 0.65 (g) SCI (h) Zero-DCE (1) Zero-DCE++ (1) LLFlow (k) ours (1) Truth
QuadPrior[36] CoCo 20.31 0.80 21.39 0.86 20.33 0.77 18.56 0.62 17.99 0.71
ours LOL 21.90  0.84 22.31 0.87 19.39  0.74 19.11 0.74 19.89 0.77 Figure 5. Visual comparison of low-light images sampled from the LOL test set.




