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• Remote sensing image super-resolution is a key
technology in remote sensing image processing. Its goal is
to restore low-resolution remote sensing images into high-
resolution ones, thereby enhancing the spatial details of
remote sensing imagery. Although the spatial resolution of
modern satellites has improved significantly, many
challenges still remain.

• On the one hand, in the process of acquiring high-
resolution images, factors such as cloud cover and high
acquisition costs may affect the results, making it not
always easy to obtain high-quality data.

• On the other hand, different application scenarios—such as
urban planning, agricultural monitoring, and
environmental protection—require varying levels of image
detail and coverage. Continuous super-resolution can
dynamically adjust the magnification according to specific
needs, providing greater adaptability.



Ø In recent years, denoising diffusion models have demonstrated outstanding performance in high-
fidelity image reconstruction. They possess strong denoising capabilities and produce high-quality
generation results. However, their input priors usually rely on simple upsampling operations (such
as bicubic interpolation), which are relatively limited in expressiveness, and they are constrained by
fixed magnification factors.

Core idea: Starting from pure noise, a neural network learns a step-by-step denoising process to
eventually generate a clear image.
Two stages:
• Forward process: Gradually add Gaussian noise to the image until it becomes pure noise.
• Reverse process: A neural network learns a gradual denoising process to restore the original
image from noise.



Ø Neural operators can learn mappings between infinite-dimensional function spaces, extract latent
continuous high-frequency information, and effectively overcome the limitations of insufficient
expressiveness in input priors and fixed resolution. Therefore, we introduce neural operators into the
conditional denoising diffusion model to enhance the expressive power of input priors, thereby further
improving the quality of generated images and enabling more flexible continuous super-resolution.

Core idea: Model the super-resolution problem as a function space mapping problem. By learning a neural
operator, the low-resolution image function is directly mapped to the high-resolution image function.
• Feature extraction
Use EDSR to extract low-resolution image features, and combine them with intra-pixel positional offsets to
construct input features.
• Kernel integral layer
Introduce a Galerkin-type attention mechanism to simulate kernel integral operations, achieving global
information aggregation while maintaining linear complexity.
• Basis function update
Employ multi-layer attention + feed-forward networks to dynamically adjust hidden representations,
enhancing the ability to express high-frequency information.



(a) Overall model
architecture. The
algorithm's rough flow
is that a noisy image
undergoes T iterative
denoising steps and
ultimately generates a
clear image.

(b) Neural-operator architecture. The low-resolution image is first encoded into high-dimensional features by an encoder
(E), an interpolation function, and a lifting operator (ℒ). These features are then passed through a kernel-integral module
composed of Galerkin-type attention to produce output features. Finally, an MLP is used for channel transformation.

(c) Integration of the
neural operator with
the diffusion model. 
Here Q, K, V denote
the query, key and
value components in
the attention
mechanism.



• The UCMerced dataset contains 21 categories, with 100 images per category, for a total of 2,100 images.

The images are uniformly sized at 256 × 256 pixels and are sourced from aerial imagery of different

regions in the United States. The dataset mainly includes common land-cover types such as airports,

residential areas, commercial areas, and forests.

• The AID (Aerial Image Dataset) is built from Google Earth imagery and contains 30 different land-use

scene categories, with a total of 10,000 images. The number of images per category ranges from 220 to 420.

The image size is 600 × 600 pixels. This dataset covers a broader range of scene categories, including

schools, squares, industrial areas, parking lots, and more.

• The RSSCN7 (Remote Sensing Scene Classification Network 7) dataset contains 7 categories, with 400

images per category, for a total of 2,800 images. Each image has a size of 400 × 400 pixels. The images are

captured under diverse imaging conditions, including different seasons, angles, times, and weather.

1.Dataset introduction



• We first pre-trained the neural operator component for 500 epochs with a batch size of 64. Then, we froze the

neural operator’s weights and trained the entire NeurOp-Diff model. In this stage, the batch size was set to 10,

and training proceeded for about 1 million iterations. We used the Adam optimizer with an initial learning rate

of 1×10⁻⁴ and a minimum learning rate of 2×10⁻⁶. For the first 0.1M iterations, the learning rate was kept

constant, after which a decay strategy was applied. During training, dropout was set to 0.2.

• For training, the scaling factor s∼U(1,M] was sampled from a uniform distribution to cover multiple

magnification levels. For the super-resolution task, larger T values usually yield better results. Therefore, in

this experiment, we set T=2000. The L1 norm was chosen as the loss function.

• Our experiments were conducted on a single RTX 4090 GPU. During inference, we adopted a uniform sampling

strategy to speed up the process. Results showed that setting the number of diffusion steps to 50 produced

good inference performance.

2.Model training details



3.Generative Model Comparison

• Our method (NeurOp-Diff) was compared

with other generative diffusion models on the

UCMerced, AID, and RSSCN7 datasets for 4×

and 8× super-resolution.

• In terms of Peak Signal-to-Noise Ratio

(PSNR) and Structural Similarity Index

(SSIM), our approach achieved higher scores

than the other models (as shown in the figure).
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4.Comparison of Regression-Based
Continuous Super-Resolution Models
• We conducted a comparison with two regression-
based continuous super-resolution models (LIIF and
SRNO) under 4× super-resolution.

• As shown in the figure, from the quantitative results,
although LIIF and SRNO achieved higher values in
Peak Signal-to-Noise Ratio (PSNR), our model
demonstrated better performance in Structural
Similarity Index (SSIM). In addition, regarding
Learned Perceptual Image Patch Similarity (LPIPS),
our model generated images that showed smaller
differences from the ground-truth images.

LIIF SRNO NeurOp-DiÆ Reference



5.Comparison of Continuous Super-Resolution Models

• We randomly selected multiple scaling factors within the range of (1, 8] and visualized the results under
these magnifications using SRNO and our method.

• As shown in the figure, visually, our model demonstrates better performance in the clarity of court
boundary lines and the natural texture transitions of the surrounding environment. These advantages
become more pronounced at higher magnification levels. In contrast, SRNO often struggles to fully
recover complex textures at larger scaling factors, resulting in generated images that lack detail.



As shown in the figure, from a quantitative perspective, although SRNO achieves better Peak Signal-to-Noise
Ratio (PSNR) at lower magnification factors (e.g., 2× to 3.1×), our model delivers superior performance in terms
of Structural Similarity Index (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS), aligning more
closely with human visual perception. As the magnification factor increases, the advantages of our model become
more pronounced, especially in challenging scenarios with higher magnifications (e.g., 7× to 10×).



6.Ablation experiment
We replaced the scale-adaptive conditional network in
our model with three different conditioning mechanisms
to construct comparison models:

(1)Directly concatenating the upsampled low-resolution
image with the ground-truth image.
(2)Concatenating the low-resolution image features
encoded by EDSR with the ground-truth image.
(3)Concatenating the low-resolution features encoded
by the neural operator (NO) with the ground-truth image.

From the quantitative results, our adaptive conditional
network provides richer prior knowledge.



Thank you for watching！


