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Backgrounds (Subject-driven generation)

Input: a few images of a subject (e.g., a dog)
Goal: generate new images aligned with prompts
Key challenge: preserve identity while adapting to diverse contexts
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Problem Definition

Problem
 Diffusion personalization — high quality but slow
* Naive VAR fine-tuning — fast, but identity underfitting & language drift

Our Answer

« Efficient VAR framework with Selective Layer Tuning, Scale-wise Weighted Tuning,
and Prior Distillation

— fast (~0.5 s) and faithful generation

Model Type Inference Speed Quality
Diffusion-based Slow Nice @
Naive VAR Fine-Tuning Fast é Bad
Ours Fast é Good @




Our Framework (ARBooth)

Subject-driven Fine-Tuning

* Encode subject images into multi-scale token maps
* Fine-tune only key layers (CA & FFN) with subject token
» Use Weighted CE Loss to emphasize coarse scales
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Selective Layer Tuning (1)

Idea
» Fine-tune only CA & FFN layers — efficient & effective personalization

Why?

 Effectively captures subject identity with fewer parameters
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Selective Layer Tuning (2)

Observation
 When all layers are tuned, CA & FFN change the most
« Empirical results: tuning only CA+FFN — strong identity and prompt alignment
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Scale-wise Weighted Tuning (1)

Idea
» Early (coarse) scales mainly determine subject identity
 Later (fine) scales refine only minor details

Our Approach

* Apply a Weighted Cross-Entropy (L,,cg) loss
 Assign larger weights to coarse scales — better preservation of subject identity
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Scale-wise Weighted Tuning (2)

Observation

* Noise injection analysis: replacing coarse scales drastically changes the generated
content

» Fine-scale replacement barely affects subject identity (similar to diffusion models)
« Emphasizing coarse scales through SWT — improves fidelity and stability
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Scale-wise Weighted Tuning (3)

Observation
* Without SWT — identity drift
« With SWT — subject preserved
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Prior Distillation (1)

Idea
» Naive VAR fine-tuning — language drift & reduced diversity

Our Approach
« Distill class priors from pretrained model (Teacher — Student)
« KL-divergence loss — preserve knowledge & maintain diversity without extra data
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Prior Distillation (2)

Observation
« Without Prior Distillation — model overfits, collapsing to the fine-tuned subject

« With Prior Distillation — retains pretrained knowledge, generating diverse and
faithful subject instances
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Qualitative Comparison (1)
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Qualitative Comparlson (2)
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Quantitative Comparison

» Dataset: ViCo [1] — 16 subjects x 31 prompts

« Evaluation: 8 images per pair — total 3,968 generations

Subject Fidelity (14,0 1) Text Fidelity (T, 1) Time |
TI 0.529 0.220 18 s
DreamBooth 0.640 0.815 18 s
CD 0.659 0.815 18 s
ELITE 0.584 0.783 11s
DreamMatcher 0.682 0.823 32s
Ours 0.705 0.824 0.5s
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[1] Ham, Cusuh, et al. "Personalized residuals for concept-driven text-to-image generation." CVPR 2024.



Contributions

Our Contributions
» We propose the first VAR-based subject-driven generation framework (ARBooth)

« Key components:

« Selective Layer Tuning — fine-tune only CA & FFN layers for efficient
personalization

» Scale-wise Weighted Tuning — emphasize coarse scales to preserve subject
identity

» Prior Distillation — distill class priors from the pretrained model to prevent
language drift

Results
» Achieves fast inference (~0.5 s) with high subject fidelity and text alignment
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