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Backgrounds (Subject-driven generation)
Input: a few images of a subject (e.g., a dog)
Goal: generate new images aligned with prompts
Key challenge: preserve identity while adapting to diverse contexts
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Problem Definition
Problem

• Diffusion personalization → high quality but slow
• Naïve VAR fine-tuning → fast, but identity underfitting & language drift

Our Answer
• Efficient VAR framework with Selective Layer Tuning, Scale-wise Weighted Tuning, 

and Prior Distillation
→ fast (~0.5 s) and faithful generation
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Model Type Inference Speed Quality

Diffusion-based Slow Nice

Naïve VAR Fine-Tuning Fast Bad

Ours Fast Good



Our Framework (ARBooth)
Subject-driven Fine-Tuning

• Encode subject images into multi-scale token maps
• Fine-tune only key layers (CA & FFN) with subject token
• Use Weighted CE Loss to emphasize coarse scales
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Selective Layer Tuning (1)
Idea

• Fine-tune only CA & FFN layers → efficient & effective personalization

Why?
• Effectively captures subject identity with fewer parameters
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Selective Layer Tuning (2)
Observation

• When all layers are tuned, CA & FFN change the most
• Empirical results: tuning only CA+FFN → strong identity and prompt alignment
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Scale-wise Weighted Tuning (1)
Idea

• Early (coarse) scales mainly determine subject identity
• Later (fine) scales refine only minor details

Our Approach
• Apply a Weighted Cross-Entropy (𝑳𝒘𝑪𝑬) loss
• Assign larger weights to coarse scales → better preservation of subject identity
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Scale-wise Weighted Tuning (2)
Observation

• Noise injection analysis: replacing coarse scales drastically changes the generated 
content

• Fine-scale replacement barely affects subject identity (similar to diffusion models)
• Emphasizing coarse scales through SWT → improves fidelity and stability

VAR

Noise injection starting from different scales

Diffusion

Forward process at different timesteps
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Scale-wise Weighted Tuning (3)
Observation

• Without SWT → identity drift
• With SWT → subject preserved
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Prior Distillation (1)
Idea

• Naïve VAR fine-tuning → language drift & reduced diversity

Our Approach
• Distill class priors from pretrained model (Teacher → Student)
• KL-divergence loss → preserve knowledge & maintain diversity without extra data
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Prior Distillation (2)
Observation

• Without Prior Distillation → model overfits, collapsing to the fine-tuned subject
• With Prior Distillation → retains pretrained knowledge, generating diverse and 

faithful subject instances
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Qualitative Comparison (1)

Input images

Ours

a 𝑆∗  teddybear floating on top of water

TIDreamBoothCDELITEDreamMatcher

a purple 𝑆∗  teddybear 12



Qualitative Comparison (2)
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Quantitative Comparison
• Dataset: ViCo [1] → 16 subjects × 31 prompts
• Evaluation: 8 images per pair → total 3,968 generations

Model Subject Fidelity (𝑰𝒅𝒊𝒏𝒐 ↑) Text Fidelity (𝑻𝒄𝒍𝒊𝒑 ↑) Time ↓

TI 0.529 0.220 18 s
DreamBooth 0.640 0.815 18 s

CD 0.659 0.815 18 s
ELITE 0.584 0.783 11 s

DreamMatcher 0.682 0.823 32 s
Ours 0.705 0.824 0.5 s

[1] Ham, Cusuh, et al. "Personalized residuals for concept-driven text-to-image generation." CVPR 2024.
14



Contributions
Our Contributions
• We propose the first VAR-based subject-driven generation framework (ARBooth)
• Key components:

• Selective Layer Tuning → fine-tune only CA & FFN layers for efficient 
personalization

• Scale-wise Weighted Tuning → emphasize coarse scales to preserve subject 
identity

• Prior Distillation → distill class priors from the pretrained model to prevent 
language drift

Results
• Achieves fast inference (~0.5 s) with high subject fidelity and text alignment

15



Thank you!
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