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Bring DINO to 3D %
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Semantic Scene Completion (SSC) ICCVE iniini

a.k.a. Semantic Occupancy Prediction

Single input image

v" Comprehensive 3D scene understanding task
v Applications in robotics, autonomous driving, medical image analysis, and civil engineering
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Geometric & 3D semantic supervision (e.g., [1])

[1] S. Song et al., “Semantic scene completion from a single depth image,” in CVPR, 2017.
[2] Y. Huang et al., “SelfOcc: Self-supervised vision-based 3D occupancy prediction,” in CVPR, 2024.
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Geometric & 3D semantic supervision (e.g., [1])

— Ground truth very expensive = — Special hardware needed
— Infeasible to scale

[1] S. Song et al., “Semantic scene completion from a single depth image,” in CVPR, 2017.
[2] Y. Huang et al., “SelfOcc: Self-supervised vision-based 3D occupancy prediction,” in CVPR, 2024.
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— Ground truth very expensive  — Special hardware needed — Still, expensive to obtain
— Infeasible to scale — Limited generalization

[1] S. Song et al., “Semantic scene completion from a single depth image,” in CVPR, 2017.
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— Ground truth very expensive  — Special hardware needed — Still, expensive to obtain
— Infeasible to scale — Limited generalization

Large-scale SSC annotations infeasible — unsupervised SSC

[1] S. Song et al., “Semantic scene completion from a single depth image,” in CVPR, 2017.
[2] Y. Huang et al., “SelfOcc: Self-supervised vision-based 3D occupancy prediction,” in CVPR, 2024.
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Single Input Image 3D Feature Field SSC Prediction

v Fully unsupervised v/ Multi-view self-supervision v Feed-forward inference
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« Single input image 1
» 2D encoder-decoder £ — dense embedding E
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« Single input image 1
» 2D encoder-decoder £ — dense embedding E
o Implicit MLP head ¢(x;,e4) = (fx, 0x)
» Seg. head h predicts semantics py
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Single Input Image 3D Feature Field
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Single Input Image 3D Feature Field SSC Prediction
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Reconstructed views
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Single Input Image 3D Feature Field



SceneDINO Training ICCV% il

3D Feature Field SSC Prediction
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» Goal: Learn unsupervised segmentation head
 Ildea: Magnify semantic correspondence & cluster features
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» Goal: Learn unsupervised segmentation head
 Ildea: Magnify semantic correspondence & cluster features
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» Goal: Learn unsupervised segmentation head
 Ildea: Magnify semantic correspondence & cluster features

3D feature
sampling

Center point X;
» Accepted samples
- Rejected samples
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» Goal: Learn unsupervised segmentation head
 Ildea: Magnify semantic correspondence & cluster features

3D feature
sampling  Head projects features down
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» Goal: Learn unsupervised segmentation head
 Ildea: Magnify semantic correspondence & cluster features

3D feature
sampling

Feature
buffer

Y
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kNN

Random

» Head projects features down
» Lgist aligns correspondences
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» Goal: Learn unsupervised segmentation head
 Ildea: Magnify semantic correspondence & cluster features

3D feature
sampling « Head projects features down
» Lgist aligns correspondences
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Input Image SceneDINO S4C + STEGO
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S4C + STEGO

Input Image SceneDINO
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e KITTI-360-SSCBench experiments (full range 51.2 m validation)

Method Unsupervised Target features mloU (in %, 1)
S4C [3] (2D supervised) X n/a 10.19
S4C [3] + STEGO [4] v DINO 6.60
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e KITTI-360-SSCBench experiments (full range 51.2 m validation)

Method Unsupervised Target features mloU (in %, 1)
S4C [3] (2D supervised) X n/a 10.19
S4C [3] + STEGO [4] v DINO 6.60
SceneDINO (Ours) v DINO 8.00
SceneDINO (Ours) v DINOv2 9.08

State-of-the-art unsupervised semantic scene completion accuracy
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Results: Unsupervised SSC

e KITTI-360-SSCBench experiments (full range 51.2 m validation)

Method Unsupervised Target features mloU (in %, 1)
S4C [3] (2D supervised) X n/a 10.19
S4C [3] + STEGO [4] v DINO 6.60
SceneDINO (Ours) v DINO 8.00
SceneDINO (Ours) v DINOv2 9.08
SceneDINO (Ours) X (linear) DINOv2 10.57

Linear probing outperforms 2D supervised S4C
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DINO [5]

SceneDINO

SceneDINO’s features are significantly more multi-view consistent

[5] M. Caron et al., “Emerging properties in self-supervised vision transformers,” in ICCV, 2021.
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We presented Sce for unsupervised semantic scene completion
» Multi-view self-supervision effective for 3D scene understanding
 Single image — 3D geometry & expressive features

» Distilling & clustering leads to SoTA accuracy in unsupervised SSC

« Strong linear probing, multi-view consistency, and domain generalization
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Project Page Code & Weights

https://visinf.github.io/scenedino/
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