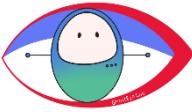


International Conference on Computer Vision, ICCV 2025

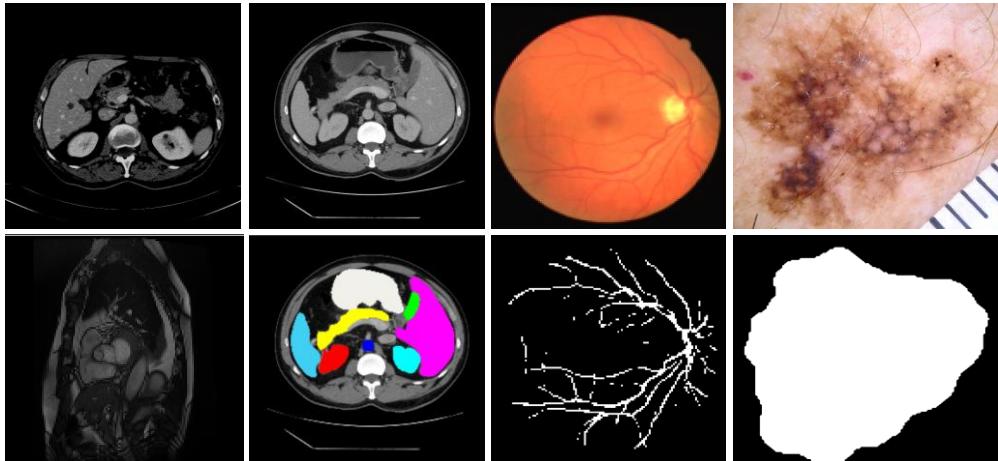
Adaptive Learning of High-Value Regions for Semi-Supervised Medical Image Segmentation

Tao Lei, Ziyao Yang, Xingwu Wang, Yi Wang, Xuan Wang, Feiman Sun, Asoke K. Nandi

ALHVR: Background

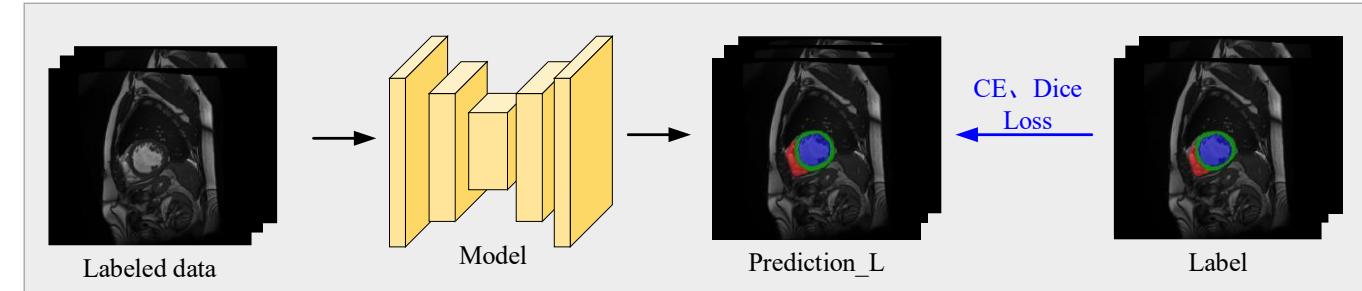


Medical image segmentation is the process of automatically distinguishing and labeling different tissues or lesion regions in medical images.

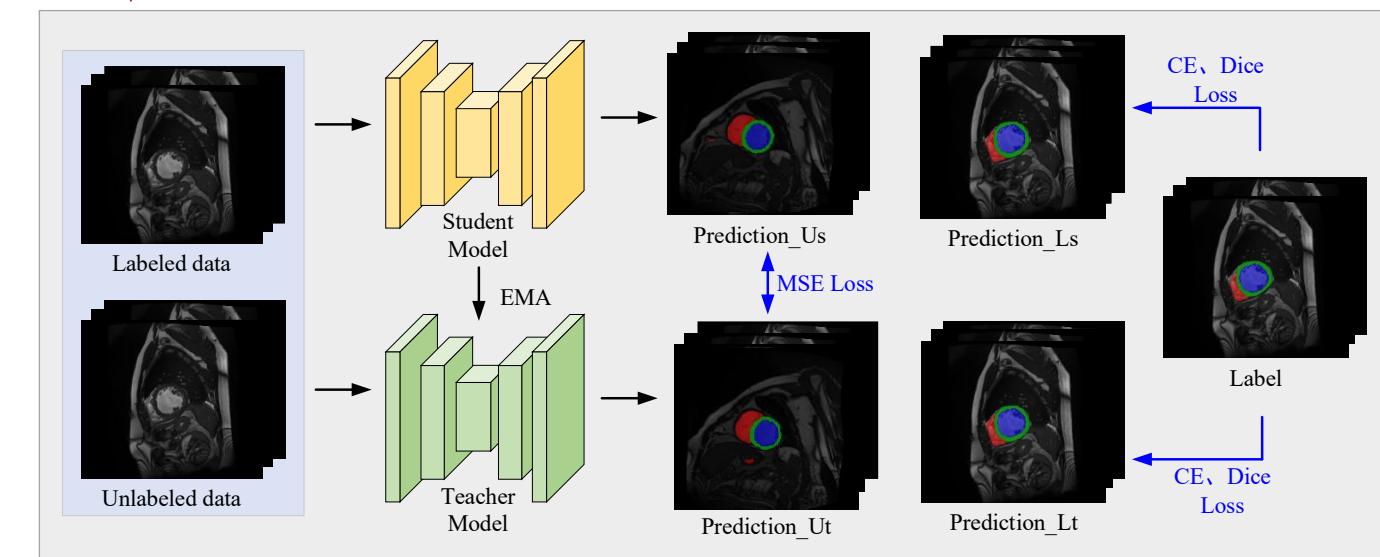


Importance of Medical Imaging:

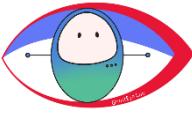
- Reflects the internal structure of the human body
- Assists in disease diagnosis
- Supports surgical planning
- Enables postoperative evaluation



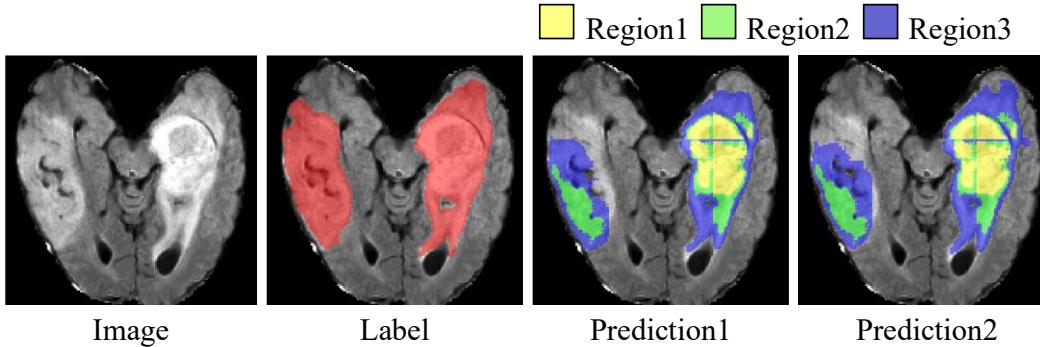
➤ Supervised models require large labeled datasets
➤ Medical image labeling is costly and time-consuming



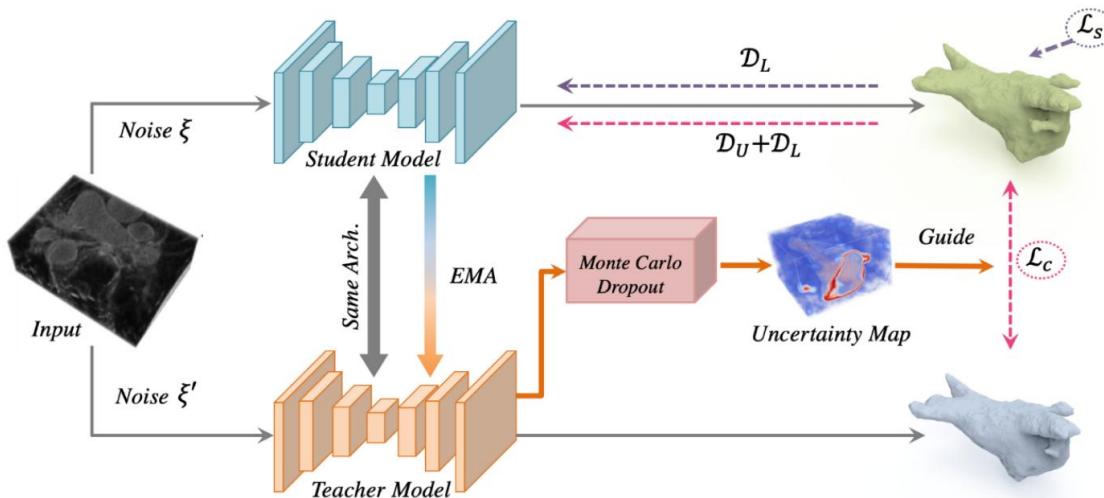
ALHVR: Motivation



Motivation 1: Which regions have higher learning value for semi-supervised medical image segmentation?

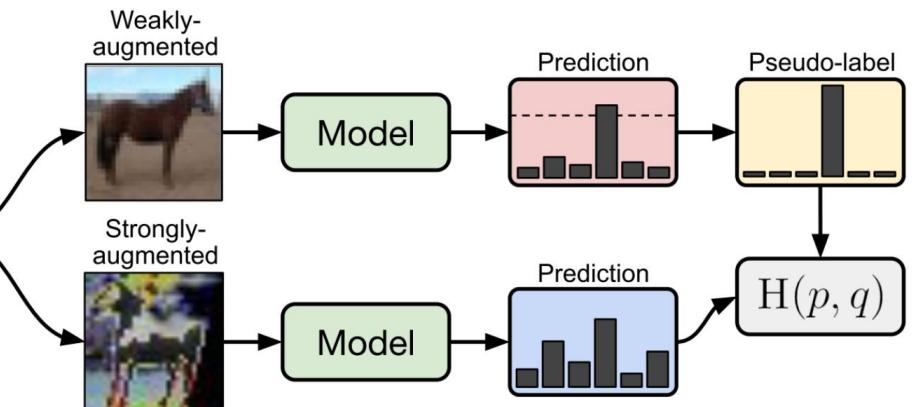


Region1: reliable and stable regions (Easy regions)
Region2: reliable and unstable regions (Harder regions)
Region3: unreliable and stable regions (Harder regions)



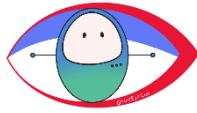
UA-MT focuses on Region 1 with low value of entropy

$$\mathcal{L}_c(f', f) = \frac{\sum_v \mathbb{I}(u_v < H) \|f'_v - f_v\|^2}{\sum_v \mathbb{I}(u_v < H)}$$



FixMatch focuses on Region 1 with high confidence

$$\ell_u = \frac{1}{\mu B} \sum_{b=1}^{\mu B} \mathbb{1}(\max(q_b) \geq \tau) H(\hat{q}_b, p_m(y | \mathcal{A}(u_b)))$$



Motivation 2: How to design different learning strategies for these various high-value regions?

Dataset	Region 1	Region 2	Region 3	Dice
ACDC	✓	✓	✓	85.34
	✓			87.13
		✓		88.46
			✓	88.20
	✓	✓		87.41
	✓		✓	82.51
		✓	✓	88.58

Table 1. Experimental results of training on the ACDC dataset with 10% labeled data using the CPS framework under different masked region settings.

An example of image filtering:

- **High-frequency** information uses a small filtering window
- **Low-frequency** information uses a large filtering window

Discovery 2: different regions should use different strategies

Region1: reliable and stable regions (it is better than R1+R2+R3, Easy regions)

Region2: reliable and unstable regions (it is better than R1, Harder regions)

Region3: unreliable and stable regions (it is close to R2, Harder regions)

Discovery 1: harder regions have higher learning value

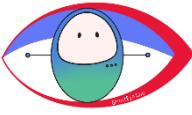
Region2:

- One prediction is good while the other is poor, maybe we should use the good one to supervise the poor one. Besides, prototype provides global information

Region3:

- The two predictions are both poor with low confidence, maybe we should use ensemble strategies to obtain a better supervised signal.

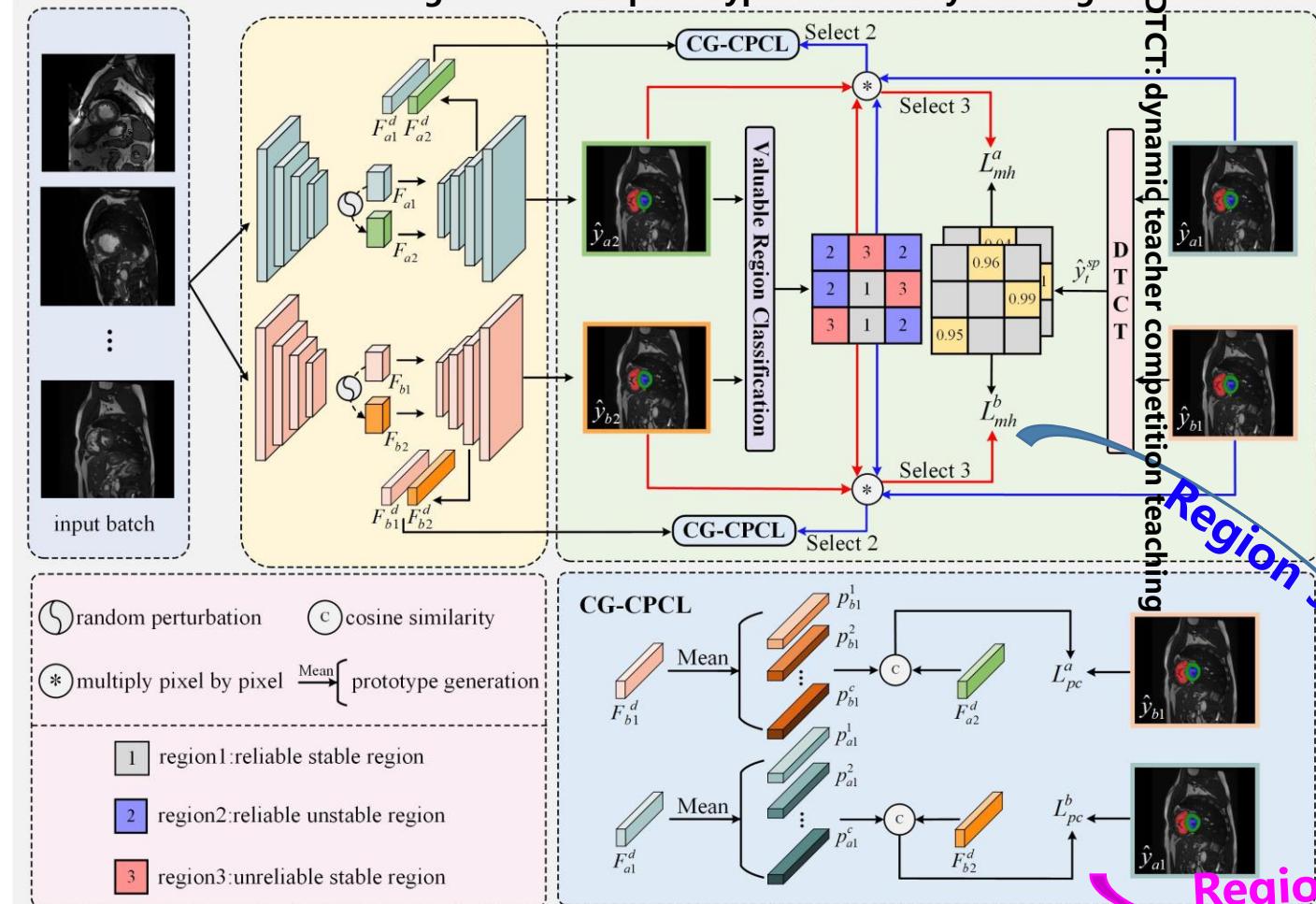
ALHVR: Method



Contributions:

CG-CPCL: confidence-guided cross-prototype consistency learning

Con is confidence map



The red line denotes CG-CPCL(prototype, R2 unstable) and blue line denotes DTCT (competition, R3 unreliable)

Contribution 1: The high-value regions are grouped into Region 2 and Region 3

$$con_{a2} = \max(\hat{y}_{a2}), con_{b2} = \max(\hat{y}_{b2})$$

$$\Omega_1 = \{con_{a2} \geq \gamma \text{ & } con_{b2} \geq \gamma\}$$

$$\Omega_2 = \{(con_{a2} > \gamma \text{ & } con_{b2} < \gamma) \mid (con_{a2} < \gamma \text{ & } con_{b2} > \gamma)\}$$

$$\Omega_3 = \{con_{a2} < \gamma \text{ & } con_{b2} < \gamma\}$$

$$\gamma = \frac{1}{K} \sum_{i=1}^K con(i)$$

Contribution 2: CG-CPCL is used for training Region 2 and DTCT is used for training Region 3

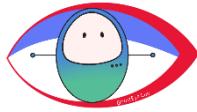
We use MSE loss and entropy regularization

$$L_{mh}^b = L_{mse}^b(\hat{y}_{b2}, (\hat{y}_{a1}, \hat{y}_{b1})) + H_{b1}(\hat{y}_{b1}) + H_{b2}(\hat{y}_{b2})$$

$$L_{pc}^b = L_{ce}^b((F_{b2}^d, p_{a1}^c), \hat{y}_{a1}^p) + L_{cos}^b(F_{b2}^d, p_{a1}^c)$$

We use CE loss and prototype consistency

ALHVR: Experiments



Overall experiments:

Table 2. Comparisons with state-of-the-art semi-supervised segmentation methods on the ACDC dataset.

Method	Labeled	Unlabeled	Dice↑	Jaccard↑	95HD↓	ASD↓
U-Net	7(10%)	0	81.59	70.74	8.07	2.35
U-Net	14(20%)	0	84.83	75.33	7.61	2.09
U-Net	70(All)	0	91.10	84.04	4.90	1.14
MT[25][NIPS'2017]			83.65	73.15	13.45	3.61
CPS[6][CVPR'2021]			85.34	75.50	8.78	2.37
MC-Net[28][MICCAI'2021]			86.07	76.58	11.48	3.37
MCF[27][CVPR'2023]			85.18	75.22	10.73	2.78
AC-MT[31][MIA'2023]			86.36	76.86	9.64	2.59
UG-MCL[36][AIIM'2023]	7(10%)	63(90%)	86.84	77.60	7.77	1.94
EVIL[7][CBM'2024]			87.25	78.18	5.31	1.35
AAU[1][MIA'2024]			86.46	76.99	8.00	2.06
MLRP[24][MIA'2024]			87.10	78.16	4.91	1.30
ours			90.56↑3.31	83.21	2.57	0.78
MT[25][NIPS'2017]			86.55	77.49	6.86	2.15
CPS[6][CVPR'2021]			87.03	78.13	6.66	2.12
MC-Net[28][MICCAI'2021]			86.58	77.68	15.99	4.93
MCF[27][CVPR'2023]			87.32	78.43	6.53	2.00
AC-MT[31][MIA'2023]			87.99	79.34	7.85	2.14
UG-MCL[36][AIIM'2023]	14(20%)	56(80%)	88.40	79.86	9.12	2.44
EVIL[7][CBM'2024]			88.34	79.90	6.46	1.68
AAU[1][MIA'2024]			87.71	78.92	8.51	2.14
MLRP[24][MIA'2024]			88.00	79.54	5.41	1.58
ours			91.09↑2.69	84.05	2.71	0.73

Table 3. Comparisons with state-of-the-art semi-supervised segmentation methods on the AbdomenCT-1K dataset.

Method	Labeled	Unlabeled	Dice↑	Jaccard↑	95HD↓	ASD↓
U-Net	1(5%)	0	67.39	57.14	46.87	11.37
U-Net	3(10%)	0	75.66	66.33	22.44	6.89
U-Net	30(All)	0	86.93	79.27	11.55	2.45
MT[25][NIPS'2017]			71.82	61.19	42.03	9.23
CPS[6][CVPR'2021]			78.14	68.32	26.25	6.68
MC-Net[28][MICCAI'2021]			80.97	71.43	32.98	7.48
MCF[27][CVPR'2023]			80.79	71.30	26.13	7.81
AC-MT[31][MIA'2023]			76.18	65.99	36.12	8.89
UG-MCL[36][AIIM'2023]	1(5%)	29(95%)	74.06	63.58	26.93	7.06
EVIL[7][CBM'2024]			80.68	71.47	23.72	6.33
AAU[1][MIA'2024]			80.65	71.03	32.68	9.04
MLRP[24][MIA'2024]			80.30	70.67	20.94	5.43
ours			84.75↑3.78	76.35	21.15	5.59
MT[25][NIPS'2017]			78.75	69.10	25.35	6.88
CPS[6][CVPR'2021]			82.71	74.11	17.30	4.90
MC-Net[28][MICCAI'2021]			82.94	74.13	19.35	4.59
MCF[27][CVPR'2023]			83.34	74.63	16.97	4.72
AC-MT[31][MIA'2023]			82.32	72.97	26.52	7.54
UG-MCL[36][AIIM'2023]	3(10%)	27(90%)	81.43	72.56	20.29	5.67
EVIL[7][CBM'2024]			84.24	75.75	18.14	5.25
AAU[1][MIA'2024]			81.42	71.82	29.69	8.25
MLRP[24][MIA'2024]			84.55	75.99	13.82	4.05
ours			85.68↑1.13	77.35	21.96	6.22

Thank you for watching

*Adaptive Learning of High-Value Regions for
Semi-Supervised Medical Image Segmentation*

Paper Link : <https://sust-reynole.github.io/download/ALHVR.pdf>
Code Link: <https://github.com/ziziyao/ALHVR>.

