

FedPall: Prototype-based Adversarial and Collaborative Learning for Federated Learning with Feature Drift

Author List

Yong Zhang, Feng Liang,
Guanghu Yuan, Min Yang
Chengming Li, Xiping Hu

- **Introduction**
- **Conceptual Framework**
- **Evaluation**
- **Discussion**
- **Conclusion**

Sources of the problem

- Differences in devices/sensor conditions (e.g. resolution, noise levels, sampling frequency, sensor sensitivity)
- Variations in environmental conditions (e.g. lighting, background, weather, location differences that alter input feature statistics)
- Heterogeneity in populations or data sources (e.g. user habits, language, culture, age, disease state, geographic region differences)

Manifestation: Feature drift in federated learning occurs when samples of the same class have differing feature distributions across clients.

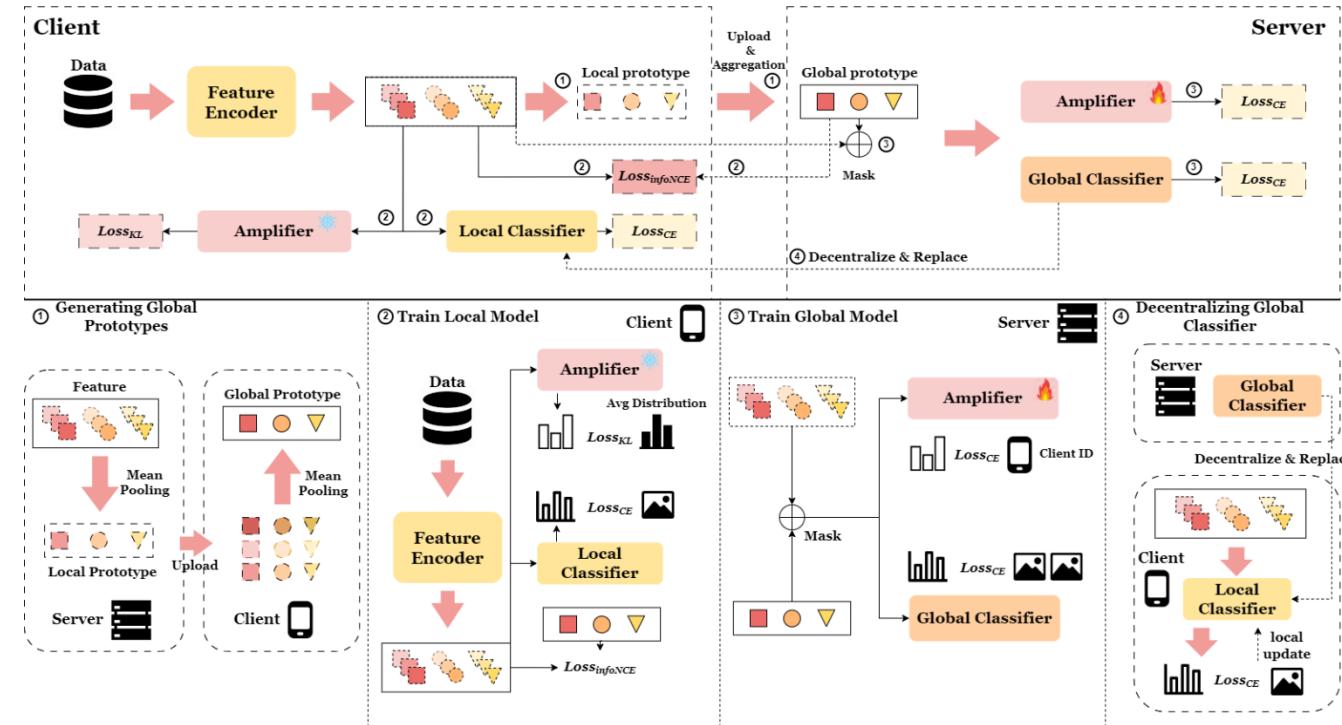
Influence

- Trigger the blurring of decision boundaries, increasing the generalization error of local models.
- Degrades the classification performance of federated learning models and reduces the effectiveness of the global aggregated model.

- Leverage prototype-based adversarial learning to align heterogeneous feature spaces.
- Employ collaborative learning to preserve class-specific information, ensuring that discriminative features remain intact.

- We use adversarial learning between clients and server, plus inter-client cooperation, to align feature representations into a unified space and reinforce category information.
- We integrate global prototypes with local features in a hierarchical manner, then train a global classifier on these hybrid features so it extracts discriminative patterns from across clients.
- Empirical evaluation on three typical feature-drifted benchmarks demonstrates that our proposed method achieves state-of-the-art classification accuracy

Conceptual Framework: Overview



1. Using adversarial learning, the framework trains a feature enhancer that encourages alignment of heterogeneous feature spaces across clients via KL divergence.
2. A prototype-based contrastive loss is applied to sharpen class-discriminative information in the learned features.
3. The adversarially aligned features are securely aggregated into global prototypes and sent to the server. There, a global-view classifier is trained on these prototypes to boost overall performance.

- ① **Generating Global Prototypes:** Local class prototypes are generated through client collaboration, and the server aggregates these local prototypes to form global prototypes.
- ② **Train Local Model:** The feature encoder is trained using the adversarial learning method, and the optimized loss function is used to force the feature encoder to enhance the client-agnostic features while generating category information.
- ③ **Training Global Model:** The adversarially aligned features are securely aggregated into global prototypes and sent to the server. There, a global-view classifier is trained on these prototypes to boost overall performance.
- ④ **Decentralizing Global Classifier:** We replace local classifiers with a global classifier to construct a more generalizable classification model, while leveraging local data to strengthen its personalization capability.

Evaluation: Main Result

		SingleSet	FedAvg	FedProx	PerfedAvg	FedRep	FedBN	MOON	FedProto	ADCOL	RUCR	FedHEAL	ours(FedPall)
Office-10	amazon	74.0(2.7)	56.9(2.5)	56.6(2.6)	57.1(2.2)	45.3(1.9)	40.8(15.8)	51.7(16.1)	69.4(2.1)	73.3(4.4)	52.1(8.5)	65.1(3.3)	72.9(1.4)
	caltech	44.7(3.2)	46.5(4.6)	51.0(5.2)	50.8(1.6)	38.4(4.9)	33.9(6.5)	41.3(13.6)	39.4(6.3)	37.2(1.7)	44.3(1.0)	44.6(3.2)	44.7(8.7)
	dslr	60.2(6.7)	30.1(4.9)	33.3(10.4)	31.2(4.9)	34.4(4.9)	38.7(3.2)	24.7(1.9)	65.6(4.9)	76.3(4.9)	30.1(6.7)	67.7(1.9)	77.4(3.2)
	webcam	71.3(2.6)	37.9(6.2)	43.7(7.2)	47.1(7.8)	55.8(2.6)	30.5(6.1)	33.3(12.7)	71.3(4.3)	71.3(2.6)	37.4(5.0)	60.9(1.0)	74.7(1.0)
	avg	62.5(0.4)	42.9(1.2)	46.1(2.6)	46.6(2.9)	43.5(1.3)	36.0(6.5)	37.8(10.9)	61.4(1.7)	64.5(1.8)	41.0(0.6)	59.6(0.5)	67.5(2.7)
Digits	MNIST	95.5(0.2)	92.9(2.2)	91.8(3.0)	90.1(4.8)	86.5(6.1)	96.7(0.1)	93.4(1.1)	96.4(0.5)	96.3(0.4)	92.6(2.0)	93.6(0.6)	97.2(0.4)
	SVHN	71.1(0.9)	77.4(0.2)	76.9(0.3)	75.6(0.4)	67.2(1.7)	79.4(0.3)	79.6(0.8)	72.5(0.3)	75.1(2.1)	77.9(0.3)	68.3(2.0)	78.0(0.4)
	USPS	86.4(0.3)	89.3(0.9)	89.2(1.4)	88.7(0.7)	90.0(3.0)	90.1(0.5)	81.8(0.7)	87.0(0.8)	86.7(1.3)	88.9(2.4)	87.0(0.5)	87.3(1.3)
	SynthDigits	95.2(0.1)	95.5(0.1)	95.4(0.1)	95.0(0.2)	94.2(0.8)	95.6(0.1)	96.6(0.2)	95.3(0.6)	96.4(0.3)	96.0(0.2)	89.3(1.6)	95.3(0.4)
	MNIST-M	76.6(0.4)	73.8(1.5)	74.0(1.5)	73.2(0.8)	69.1(0.9)	76.3(0.4)	72.2(0.9)	78.3(1.2)	78.3(4.4)	72.7(0.4)	67.8(1.9)	85.9(1.4)
	avg	84.9(0.1)	85.8(0.9)	85.5(1.1)	84.5(1.3)	81.4(2.5)	87.6(0.1)	84.7(0.6)	85.9(0.2)	86.6(1.3)	85.6(0.9)	81.2(1.3)	88.7(0.2)
PACS	art_painting	33.6(0.8)	25.8(1.9)	24.3(4.1)	26.5(2.2)	26.9(3.3)	36.7(1.8)	30.6(2.0)	32.7(0.7)	34.9(1.2)	24.7(1.1)	31.2(1.2)	35.6(0.6)
	cartoon	58.5(2.5)	45.4(2.3)	51.4(0.6)	48.3(1.2)	44.4(2.1)	55.6(2.0)	51.5(1.8)	57.3(1.5)	57.2(0.8)	47.5(3.3)	50.8(0.4)	59.7(2.3)
	photo	63.0(1.9)	48.7(3.1)	49.6(2.0)	46.9(2.6)	41.9(2.8)	66.1(1.0)	53.0(3.3)	64.0(1.3)	62.1(2.0)	47.5(6.2)	61.1(2.0)	64.7(1.3)
	sketch	79.7(0.1)	49.0(2.0)	40.7(1.5)	44.4(3.8)	40.5(1.3)	79.6(1.7)	55.1(1.4)	79.6(0.8)	80.1(1.0)	42.2(2.4)	73.8(0.1)	82.2(0.7)
	avg	58.7(1.2)	42.2(1.6)	41.5(1.8)	41.5(1.9)	38.4(1.1)	59.5(1.4)	47.6(0.9)	58.4(0.3)	58.6(0.6)	40.5(2.0)	54.2(0.5)	60.6(0.4)

- FedPall achieved consistently strong results across all datasets.
- FedPall outperforms ADCOL in terms of average accuracy across all datasets, achieving an improvement of 1.1–2.9 percentage points on average.
- Through its specialized integration of adversarial learning and collaborative learning, FedPall is able to effectively adapt to real-world datasets such as Office-10, where feature shift problems are particularly severe.

Ablation Study: Effect of Loss Combination

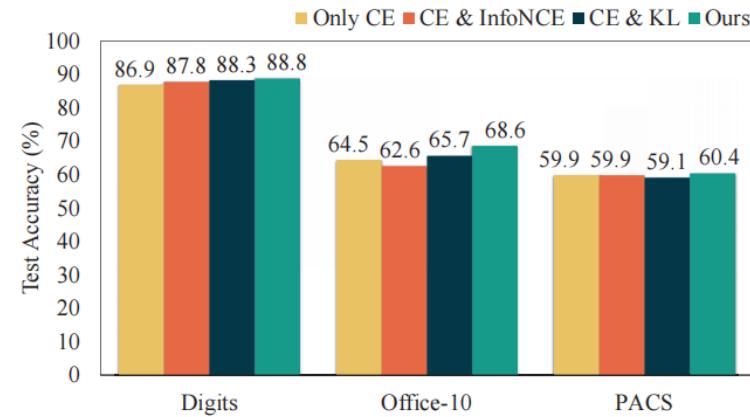


Figure 3. We evaluate the top-1 accuracy averaged over all clients using different loss function combinations on different datasets.

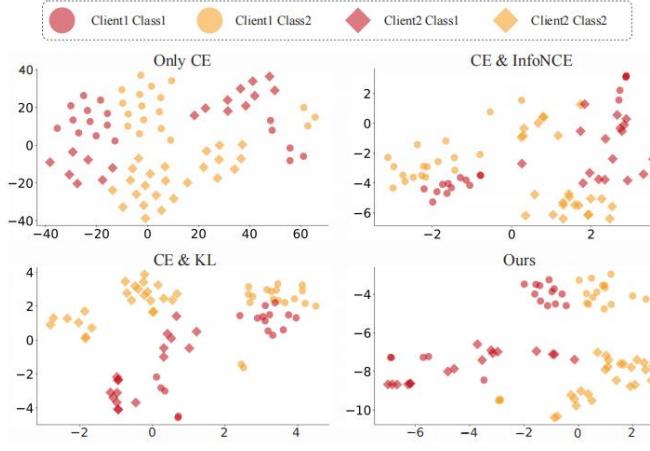


Figure 4. We plotted the feature distribution of different categories under different clients, corresponding to the four loss combination strategies of Fig. 3

Performance Comparison

- The algorithm achieves the best performance when all three losses are retained.
- Using only CE and KL may weaken class-discriminative information, resulting in poorer performance on the PACS dataset.

Qualitative analysis

The KL loss aligns features of the same class across clients, while CE and InfoNCE promote intra-client feature separability.

Hyperparameter Sensitivity Analysis

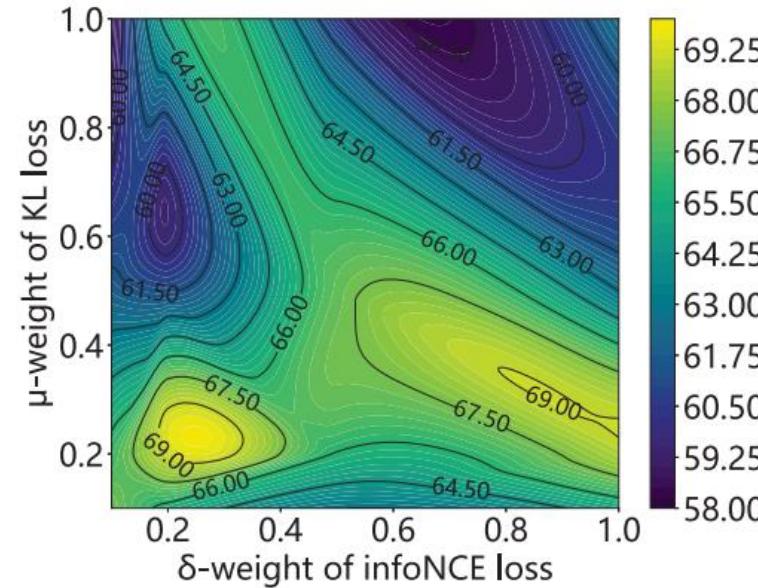


Figure 5. The top-1 accuracy (%) of different μ and δ under Office-10 dataset

When the value of μ lies within the range of [0.1, 0.4], the system maintains high accuracy and stable performance, and the influence of the δ parameter within this range is negligible.

Different Classifier Replacement Methods

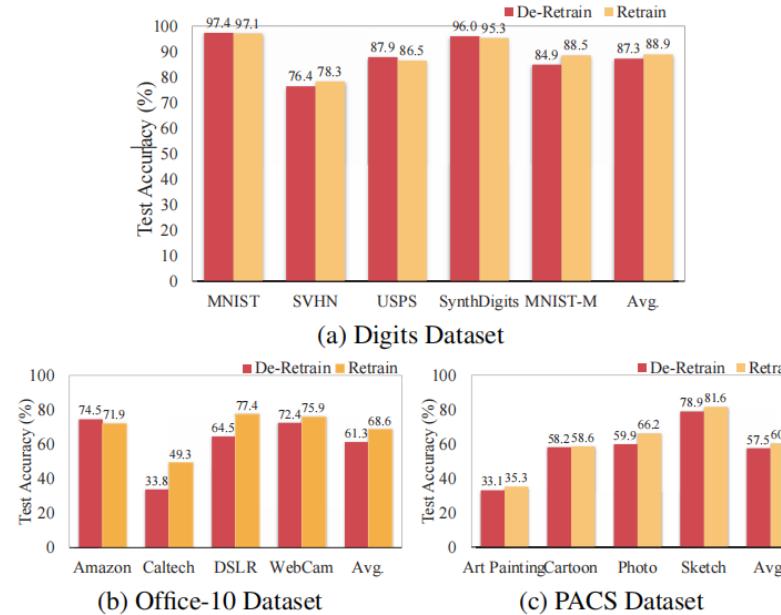


Figure 6. Comparison of accuracy with and without training the global classifier on the three datasets.

The global classifier can capture cross-client class information to enhance client–server collaboration and improve the framework's generalization ability to feature drift.

Discussion: Computational Cost

- The newly added amplifier contains only 5.59% of the parameters of the feature extractor (taking the ResNet-50 feature extractor as an example, which could be even more complex in practice).
- Since it remains frozen during local model updates, it introduces negligible computational overhead.

- Compared with other approaches where clients send the entire model parameters to the server, our method does not transmit the feature extractor, which significantly reduces communication overhead.
- Although we introduce an amplifier and a classifier, both are three-layer MLPs, so they add minimal additional communication overhead.

- **Privacy-Risk Assessment:** We assess the privacy risks of the prototype-mixed features using DEMINE (Data-Efficient Mutual Information Neural Estimator).
- **Findings and Benefits:** The results demonstrate that our approach not only offers stronger privacy protection but also enhances accuracy by maintaining alignment in the update direction between the global prototypes and the feature encoder.

深圳北理莫斯科大学
УНИВЕРСИТЕТ МГУ-ППИ В ШЭНЬЧЖЭНЕ
SHENZHEN MSU-BIT UNIVERSITY

Thanks

Code:<https://github.com/DistriAI/FedPall.git>

