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Sources of the problem

« Differences in devices/sensor conditions (e.g. resolution, noise levels, sampling frequency,
sensor sensitivity)

« Variations in environmental conditions (e.g. lighting, background, weather, location
differences that alter input feature statistics)

« Heterogeneity in populations or data sources (e.g. user habits, language, culture, age,
disease state, geographic region differences)

Manifestation: Feature drift in federated learning occurs when samples of the same class have
differing feature distributions across clients.

Influence

« Trigger the blurring of decision boundaries, increasing the generalization error of local
models.

« Degrades the classification performance of federated learning models and reduces the
effectiveness of the global aggregated model.
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* Leverage prototype-based adversarial learning to align
heterogeneous feature spaces.

 Employ collaborative learning to preserve class-specific
iInformation, ensuring that discriminative features remain
Intact.
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« We use adversarial learning between clients and server, plus inter-client
cooperation, to align feature representations into a unified space and reinforce
category information.

 We integrate global prototypes with local features in a hierarchical manner, then
train a global classifier on these hybrid features so it extracts discriminative
patterns from across clients.

« Empirical evaluation on three typical feature-drifted benchmarks demonstrates
that our proposed method achieves state-of-the-art classification accuracy
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1. Using adversarial learning, the framework trains a feature enhancer that encourages alignment of
heterogeneous feature spaces across clients via KL divergence.

2. A prototype-based contrastive loss is applied to sharpen class-discriminative information in the
learned features.

3. The adversarially aligned features are securely aggregated into global prototypes and sent to the
server. There, a global-view classifier is trained on these prototypes to boost overall performance.
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Generating Global Prototypes: Local class prototypes are generated through client collaboration,

and the server aggregates these local prototypes to form global prototypes.

@ Train Local Model: The feature encoder is trained using the adversarial learning method, and the
optimized loss function is used to force the feature encoder to enhance the client-agnostic features
while generating category information.

® Training Global Model: The adversarially aligned features are securely aggregated into global
prototypes and sent to the server. There, a global-view classifier is trained on these prototypes to
boost overall performance.

@ Decentralizing Global Classifier: We replace local classifiers with a global classifier to construct

a more generalizable classification model, while leveraging local data to strengthen its

personalization capability.
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SingleSet FedAvg FedProx PerfedAvg FedRep FedBN MOON FedProto ADCOL RUCR FedHEAL |ours(FedPall)
amazon |74.0(2.7) 56.9(2.5) 56.6(2.6) 57.1(2.2) 45.3(1.9) 40.8(15.8) 51.7(16.1) 69.4(2.1) 73.3(4.4) 52.1(8.5) 65.1(3.3) | 72.9(1.4)
caltech [44.7(3.2) 46.5(4.6) 51.0(5.2) 50.8(1.6) 38.4(4.9) 33.9(6.5) 41.3(13.6) 39.4(6.3) 37.2(1.7) 44.3(1.0) 44.6(3.2) | 44.7(8.7)
Office-10 dslr 60.2(6.7) 30.1(4.9) 33.3(104) 31.2(49) 34449 38.7(3.2) 24.7(19) 65.6(49) 76.3(4.9) 30.1(6.7) 67.7(1.9) | 77.4(3.2)
webcam | 71.3(2.6) 37.9(6.2) 43.7(7.2) 47.1(7.8) 55.8(2.6) 30.5(6.1) 33.3(12.7) 71.3(4.3) 71.3(2.6) 37.4(5.0) 60.9(1.0) | 74.7(1.0)
avg 62.5(0.4) 42.9(1.2) 46.1(2.6) 46.6(2.9) 43.5(1.3) 36.0(6.5) 37.8(10.9) 61.4(1.7) 64.5(1.8) 41.0(0.6) 59.6(0.5)  67.5(2.7)
MNIST |95.5(0.2) 92.9(2.2) 91.8(3.0) 90.1(4.8) 86.5(6.1) 96.7(0.1) 93.4(1.1) 96.4(0.5) 96.3(0.4) 92.6(2.0) 93.6(0.6) | 97.2(0.4)
SVHN | 71.1(0.9) 77.4(0.2) 76.9(0.3) 75.6(04) 67.2(1.7) 794(0.3) 79.6(0.8) 72.5(0.3) 75.1(2.1) 77.9(0.3) 68.3(2.0) | 78.0(0.4)
USPS 86.4(0.3) 89.3(0.9) 89.2(1.4) 88.7(0.7) 90.03.0) 90.1(0.5) 81.8(0.7) 87.0(0.8) 86.7(1.3) 88.9(2.4) 87.0(0.5) | 87.3(1.3)
SynthDigits | 95.2(0.1) 95.5(0.1) 95.4(0.1) 95.0(0.2) 94.2(0.8) 95.6(0.1) 96.6(0.2) 95.3(0.6) 96.4(0.3) 96.0(0.2) 89.3(1.6) | 95.3(0.4)
MNIST-M | 76.6(0.4) 73.8(1.5) 74.0(1.5) 73.2(0.8) 69.1(0.9) 76.3(0.4) 72.2(0.9) 78.3(1.2) 78.3(4.4) 72.7(0.4) 67.8(1.9) | 85.9(14)
avg 84.9(0.1) 85.8(0.9) 85.5(1.1) 84.5(1.3) 81.4(2.5) 87.6(0.1) 84.7(0.6) 85.9(0.2) 86.6(1.3) 85.6(0.9) 81.2(1.3) 88.7(0.2)
art_painting | 33.6(0.8) 25.8(1.9) 24.3(4.1) 26.5(2.2) 269(3.3) 36.7(1.8) 30.6(2.0) 32.7(0.7) 34.9(1.2) 24.7(1.1) 31.2(1.2) | 35.6(0.6)
cartoon | 58.5(2.5) 45.4(2.3) 51.4(0.6) 48.3(1.2) 44.4(2.1) 55.6(2.0) 51.5(1.8) 57.3(1.5) 57.2(0.8) 47.5(3.3) 50.8(0.4) | 59.7(2.3)
PACS photo 63.0(1.9) 48.7(3.1) 49.6(2.0) 46.9(2.6) 41.9(2.8) 66.1(1.0) 53.0(3.3) 64.0(1.3) 62.1(2.0) 47.5(6.2) 61.1(2.0) | 64.7(1.3)
sketch |79.7(0.1) 49.0(2.0) 40.7(1.5) 44.4(3.8) 40.5(1.3) 79.6(1.7) 55.1(1.4) 79.6(0.8) 80.1(1.0) 42.2(2.4) 73.8(0.1) | 82.2(0.7)
avg 58.7(1.2) 42.2(1.6) 41.5(1.8) 41.5(1.9) 38.4(1.1) 59.5(1.4) 47.6(0.9) 58.4(0.3) 58.6(0.6) 40.5(2.0) 54.2(0.5)  60.6(0.4)

Digits

 FedPall achieved consistently strong results across all datasets.

« FedPall outperforms ADCOL in terms of average accuracy across all datasets, achieving an
Improvement of 1.1-2.9 percentage points on average.

« Through its specialized integration of adversarial learning and collaborative learning, FedPall is
able to effectively adapt to real-world datasets such as Office-10, where feature shift problems are
particularly severe.
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. . Figure 4. We plotted the feature distribution of different categories
Figure 3. We evaluate the top-1 accuracy averaged over all clients under different clients, corresponding to the four loss combination

using different loss function combinations on different datasets. strategies of Fig. 3

Performance Comparison

 The algorithm achieves the best performance Qualitative analysis
when all three losses are retained. The KL loss aligns features of the same
« Using only CE and KL may weaken class- class across clients, while CE and InfoNCE
discriminative information, resulting in poorer promote intra-client feature separability.

performance on the PACS dataset.
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Figure 5. The top-1 accuracy (%) of different ;2 and ¢ under Office-
10 dataset

When the value of u lies within the range of [0.1, 0.4], the system maintains high
accuracy and stable performance, and the influence of the & parameter within this
range is negligible.
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Figure 6. Comparison of accuracy with and without training the
global classifier on the three datasets.

The global classifier can capture cross-client class information to enhance client—server
collaboration and improve the framework’s generalization ability to feature drift.
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 The newly added amplifier contains only 5.59% of the parameters of the
feature extractor (taking the ResNet-50 feature extractor as an example,
which could be even more complex in practice).

e Since it remains frozen during local model updates, it introduces negligible
computational overhead.
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« Compared with other approaches where clients send the entire model
parameters to the server, our method does not transmit the feature extractor,
which significantly reduces communication overhead.

« Although we introduce an amplifier and a classifier, both are three-layer
MLPs, so they add minimal additional communication overhead.
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* Privacy-Risk Assessment:. We assess the privacy risks of the prototype-
mixed features using DEMINE (Data-Efficient Mutual Information Neural
Estimator).

* Findings and Benefits: The results demonstrate that our approach not only
offers stronger privacy protection but also enhances accuracy by
maintaining alignment in the update direction between the global prototypes
and the feature encoder.
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Thanks

Code:https://github.com/DistriAl/FedPall.qgit
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