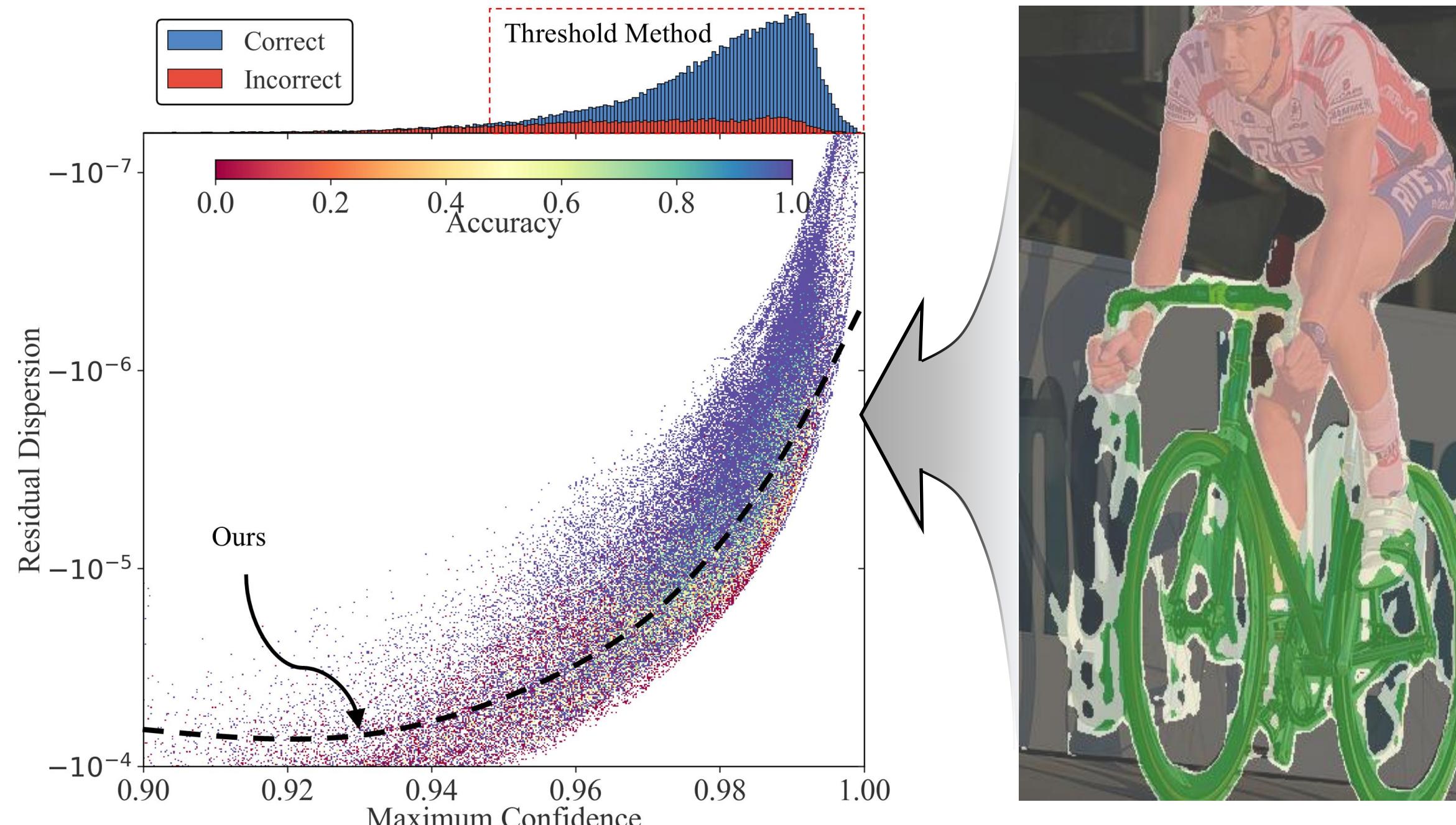


Problem

Motivation

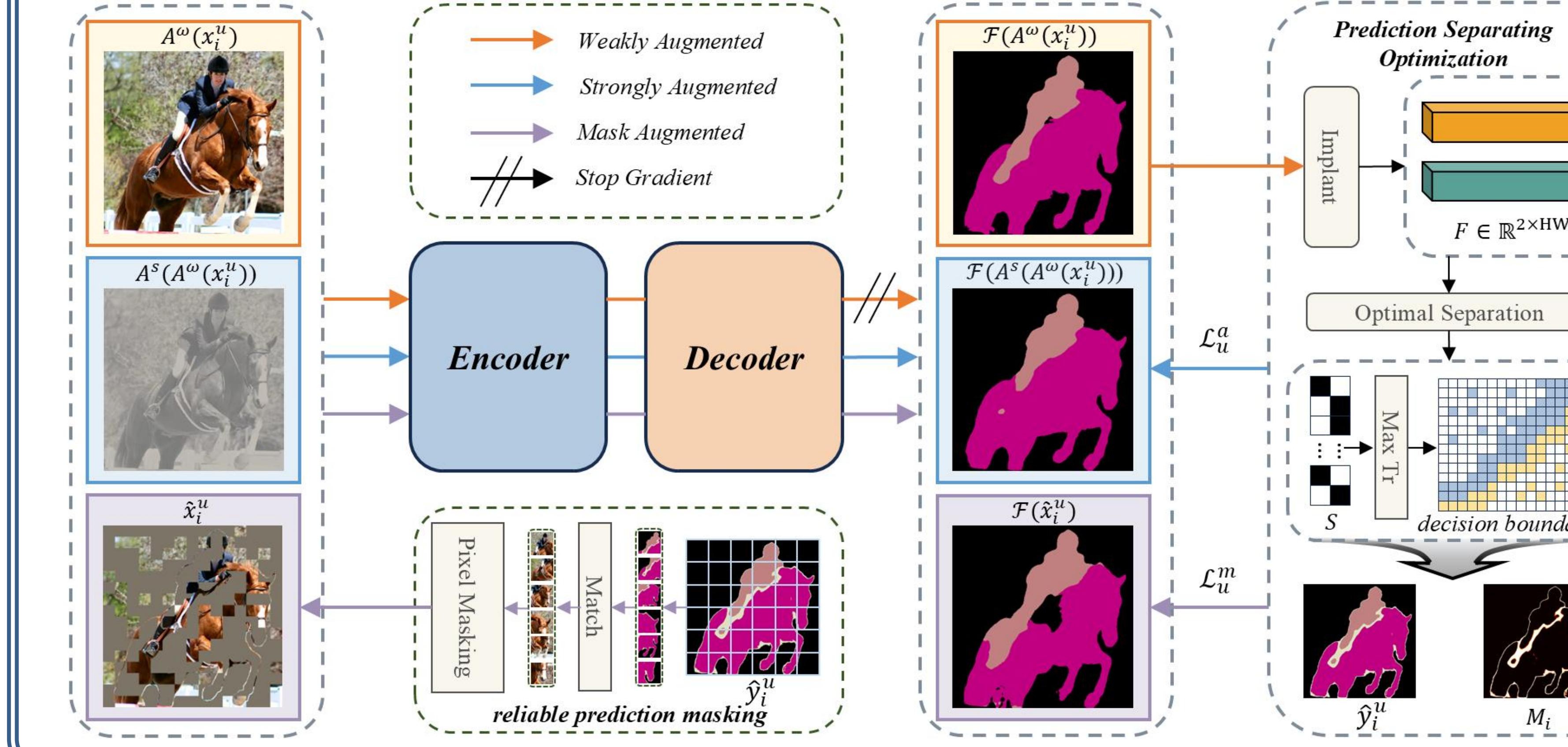
- Model confidence scores are poorly calibrated, failing to distinguish between correct and incorrect predictions.
- existing methods must discard low-confidence predictions, removes precisely the challenging and informative data.



Contribution

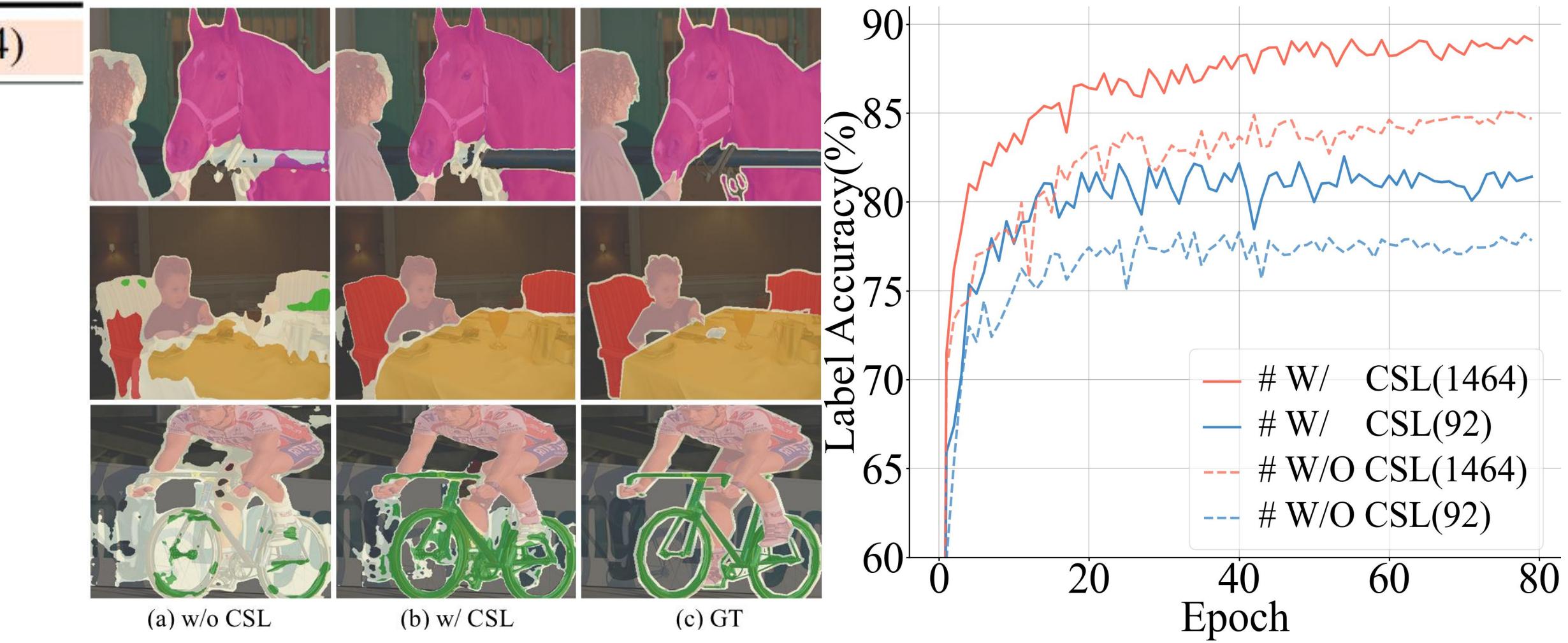
- Exposes limitations of max-confidence selection.
- A unified confidence feature space framework.
- Sample-adaptive pseudo-label selection.
- Leverages supervision from unreliable predictions.
- Achieves state-of-the-art benchmark performance.

Method



Experiments

PASCAL original	Train Size	1/16(92)	1/8(183)	1/4(366)	1/2(732)	Full(1464)
Supervised	321 × 321	45.4	53.1	61.2	68.4	73.2
ST++ [68]	321 × 321	65.2	71.0	74.6	77.3	79.1
UniMatch [69]	321 × 321	75.2	77.2	78.8	79.9	81.2
CorrMatch [50]	321 × 321	<u>76.4</u>	<u>78.5</u>	79.4	80.6	81.8
ESL [39]	513 × 513	71.0	74.1	78.1	79.5	81.8
LogicDiag [34]	513 × 513	73.3	76.7	78.0	79.4	-
RankMatch [40]	513 × 513	75.5	77.6	<u>79.8</u>	80.7	<u>82.2</u>
AugSeg [74]	513 × 513	71.1	75.5	78.8	80.3	81.4
SemiCVT [24]	513 × 513	68.6	71.3	75.0	78.5	80.3
FPL [44]	513 × 513	69.3	71.7	75.7	79.0	-
AllSpark [54]	513 × 513	76.1	78.4	79.8	80.8	82.1
CSL	321 × 321	76.8	79.6	80.3	80.9	82.3



More Pseudo-labels, Richer Supervision, Less Bias.

Proof

$$CE(p_n, q) \approx -\log p_n(k') - \frac{\epsilon(K-1)^3}{2(1-p_n(k'))^2} \cdot v_n$$

Pseudo-label selection benefits from both the maximum confidence and the residual confidence distribution.

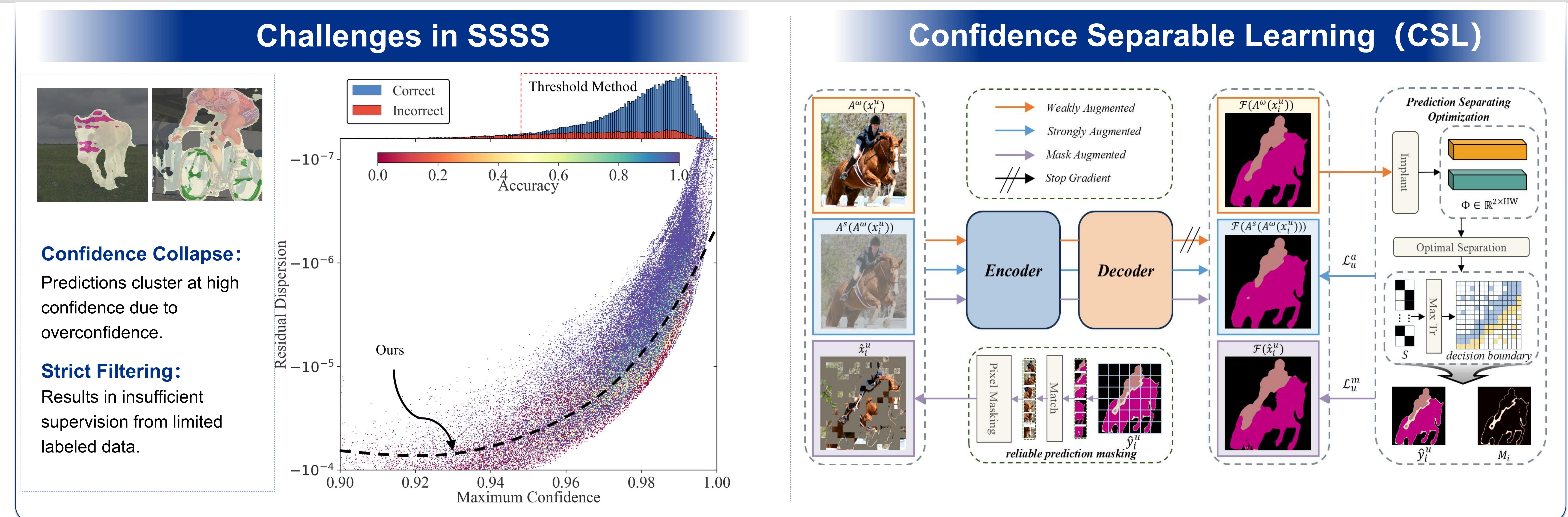
Selection Function

$$\max_S \text{Tr}(S^T \Phi^T \Phi S), \text{ s.t. } S \in \{0, 1\}^{HW \times 2}$$

Through a trace maximization objective, we achieve sample-adaptive selection of the most reliable predictions.

Challenges ➔ Lack of theoretical grounding for confidence-accuracy correlation, leading to model systemic overconfidence and suboptimal results.

Contribution ➔ First to prove that jointly optimizing max confidence and residual distribution disentangles overconfidence, enabling sample-adaptive pseudo-labeling.



→ Advances the statistical foundation of pseudo-label selection. →

Sample-Wise Optimal Labeling via Spectral Optimization, Expanding Supervision with Trusted Masking

Sample-Adaptive Pseudo-Label Selection

Algorithm 1 Pseudocode of Prediction Convex Optimization Separation in a PyTorch-like style.

```

# pmax: Pixel-level maximum confidence
# vn: Pixel-level residual dispersion
def PCOS(pmax, vn):
    # combine pmax and vn into a feature matrix Φ
    Φ = stack([pmax, vn], axis=1).T
    # extract the top two eigenvectors from Φ
    U, Sigma, VT = svd(Φ)
    eig_vectors = VT[:, :2]
    # constructing the optimal selection matrix
    S = argmax(abs(eig_vectors), axis=1)
    # calculate stats for each class
    stats = [(Φ[S == c].mean(dim=1),
              Φ[S == c].std(dim=1)) for c in range(2)]
    # select the reliable class
    mu, sigma = max(stats, key=lambda x:x[0])
    # smooth loss weight
    weight = exp(-((Φ-mu)/(8*sigma))**2)
    weight = weight.prod(dim=0)
    # preserving reliable prediction weights
    weight[(Φ[0, :]>mu[0])|(Φ[1, :]>mu[1])] = 1
    return weight

```

$$\max_S \text{Tr}(S^T \Phi^T \Phi S), \text{s.t. } S \in \{0, 1\}^{HW \times 2}$$

$$S_{n,c}^* = \Delta \left(\arg \max_{i \in \{1,2\}} |u_i(n)|, c \right)$$

$$\omega_n = \prod_c \exp \left(\frac{(h_n(c) - \mu_c)^2}{-\alpha \sigma_c^2} \right)$$

$$M_i(n) = \begin{cases} 1 & \text{if } (h_n(c) - \mu_c) > 0, \forall c \in \{1, 2\} \\ \omega_n & \text{otherwise} \end{cases}$$

Trusted Masking Strategy

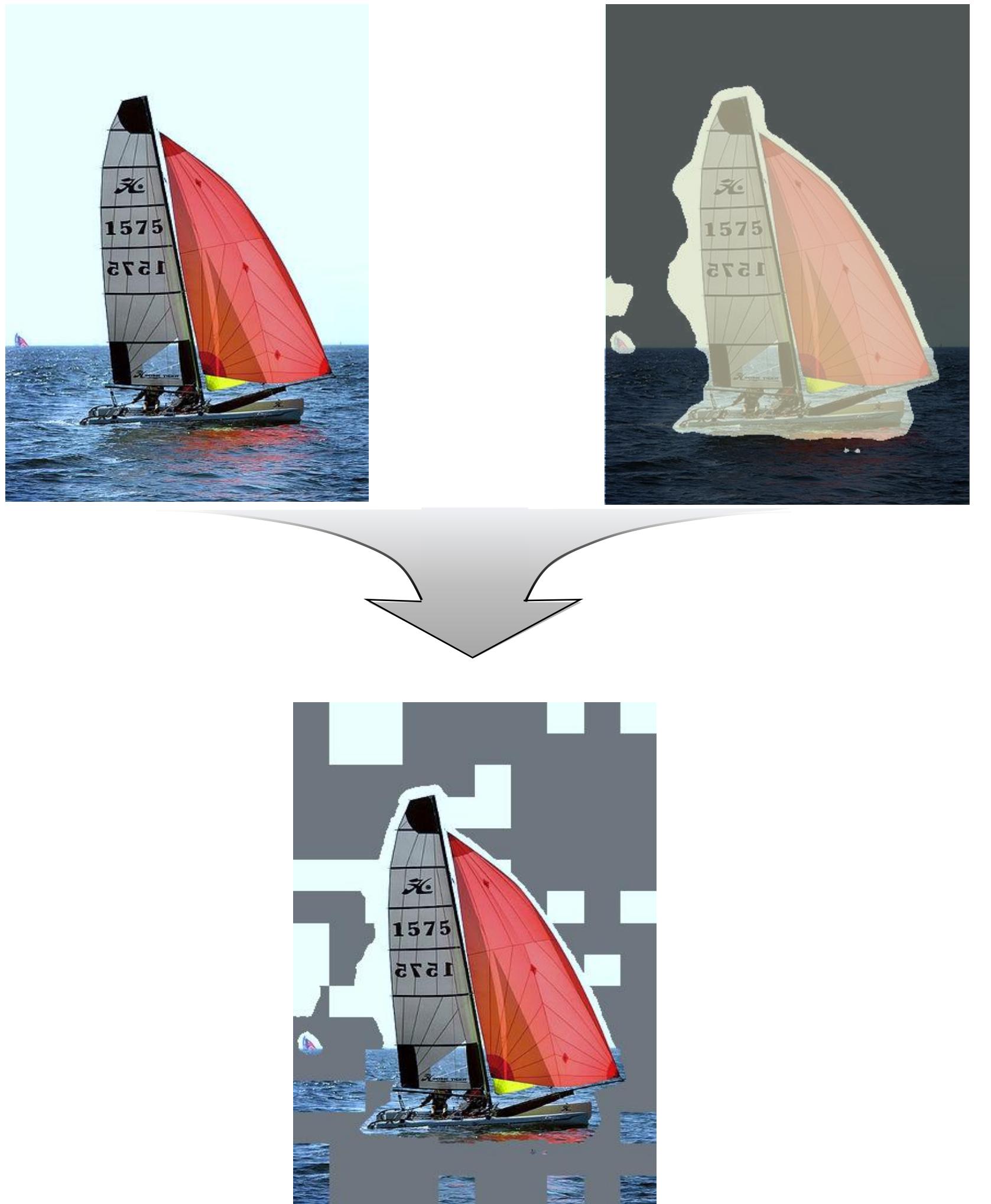
Algorithm 2 Pseudocode of Trusted Mask Perturbation in a PyTorch-like style.

```

# x_w: Image with weak augmentation perturbation
# img_size: The length or width of the image
# block_size: The masking patch size
# masking_rate: The masking pixel ratio
# f: segmentation network

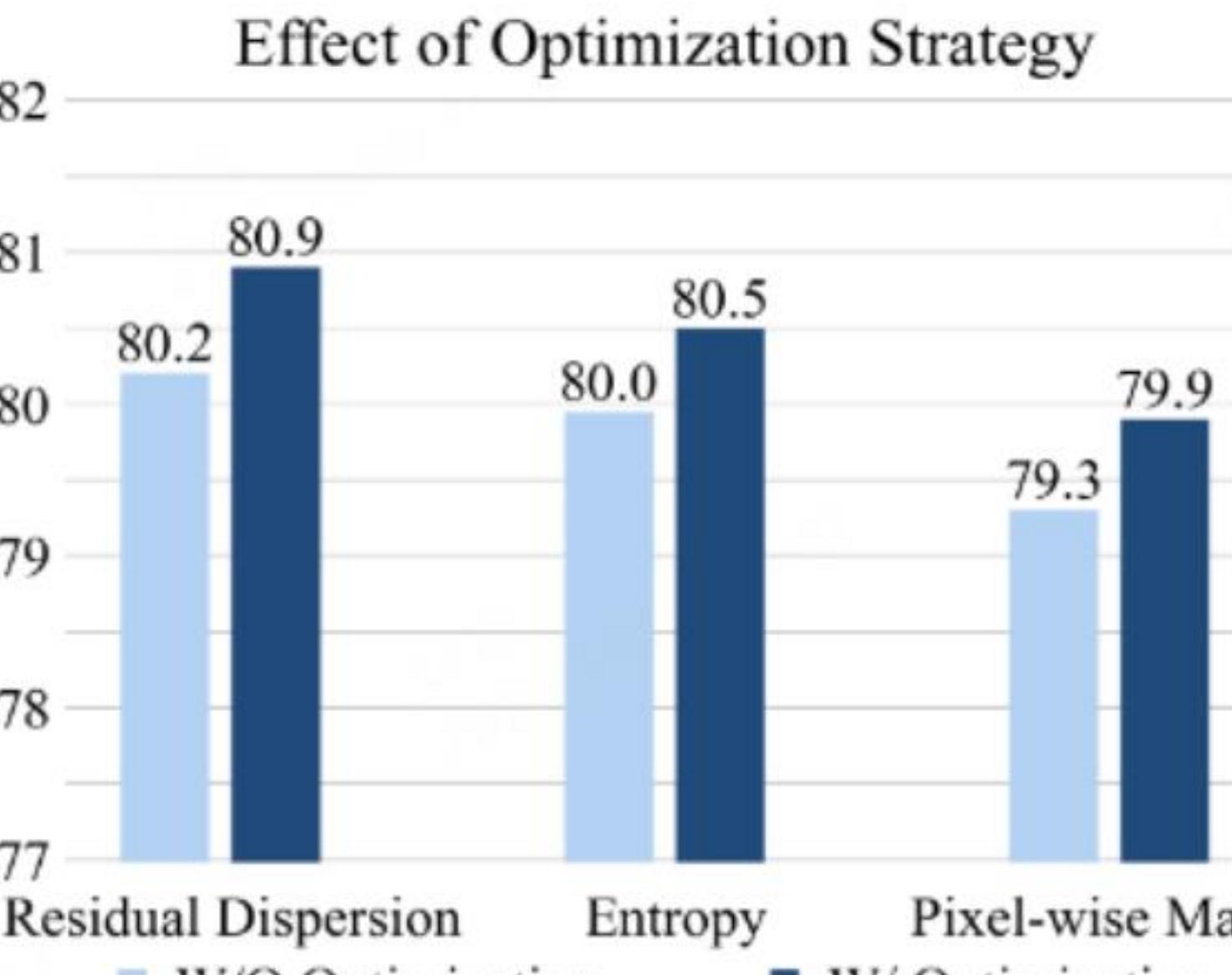
pred_w = f(x_w)
mask_w = pred_w.argmax(dim=1).detach()
# compute weights using PCOS on the projection
weight = PCOS(Projection(pred_w))
# create a reliability mask
reli_mask = (weight == 1)
# gain patch-based perturbation mask (Eq. (12))
mask_size = img_size // block_size
cover_mask = (rand(mask_size, mask_size) <
              masking_rate).float()
cover_mask = interpolate(cover_mask,
                        size=img_size, mode='nearest')
# perturbation only for reliable predictions
cover_mask = cover_mask & reli_mask
# constructing perturbed images
x_m = x_s.clone()
x_m[cover_mask == 1] = 0
pred_m = f(x_m)
# calculated loss
criterion = CrossEntropyLoss()
loss_m = criterion(pred_m, mask_w)

```

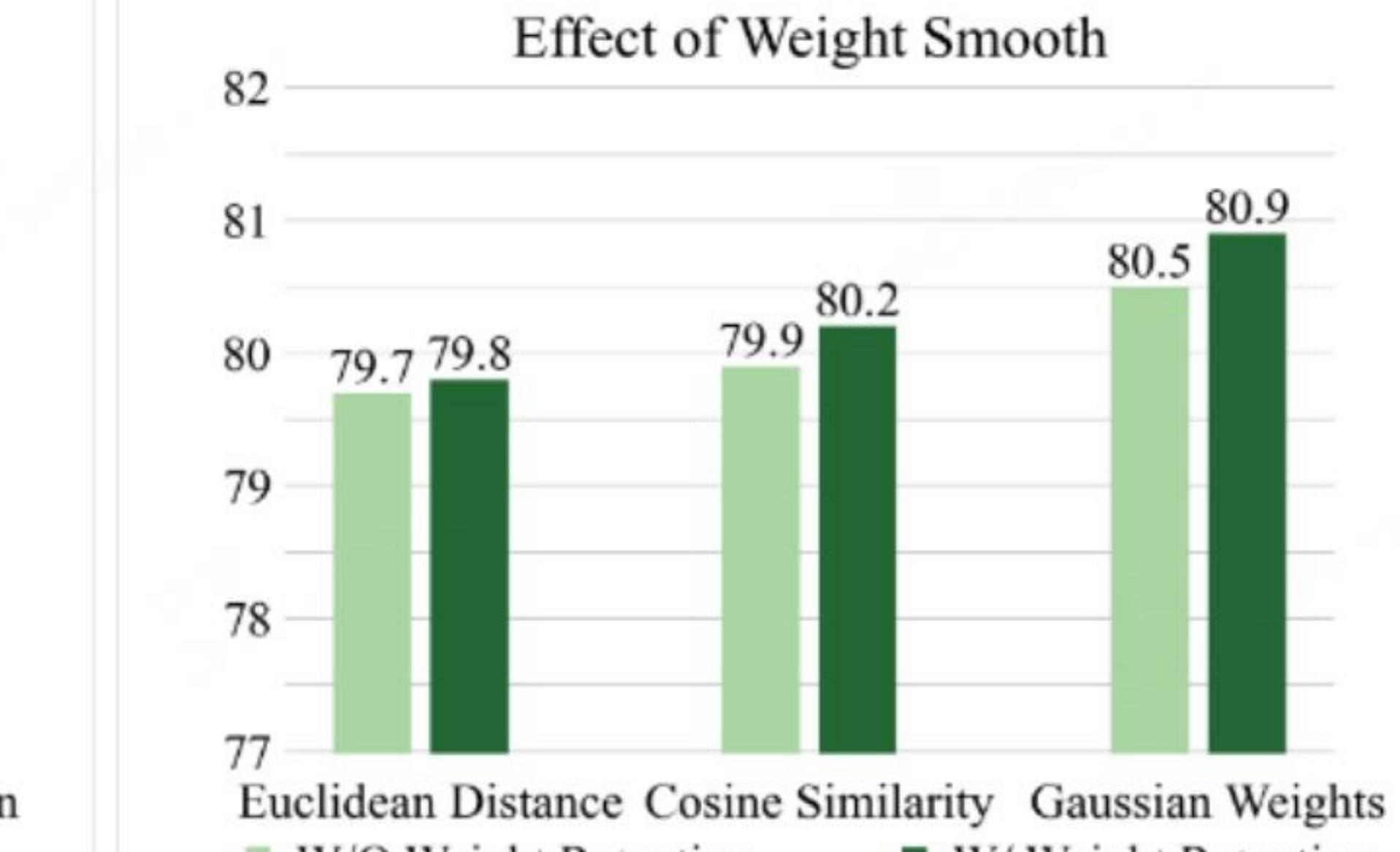


Problem

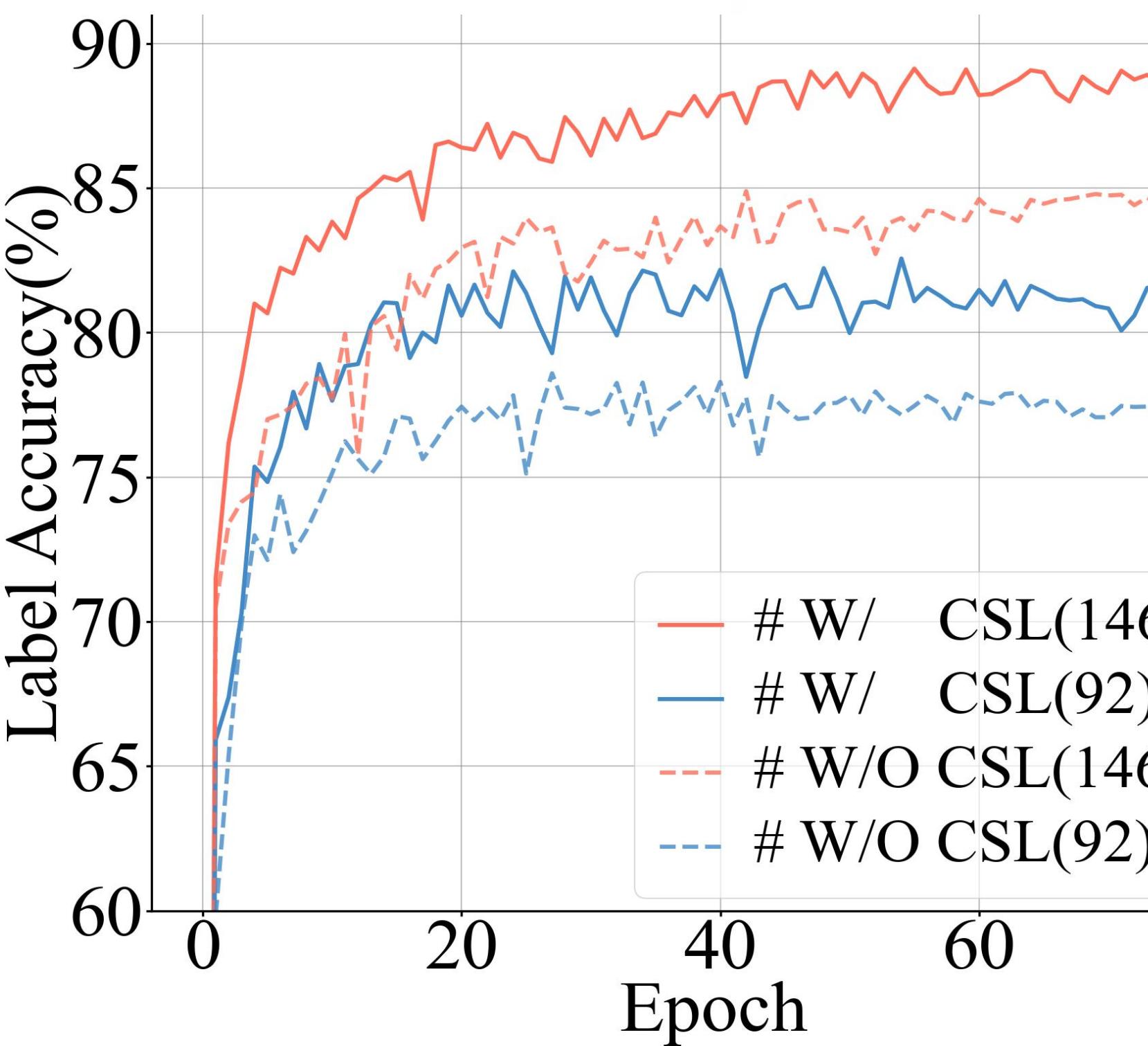
Problem



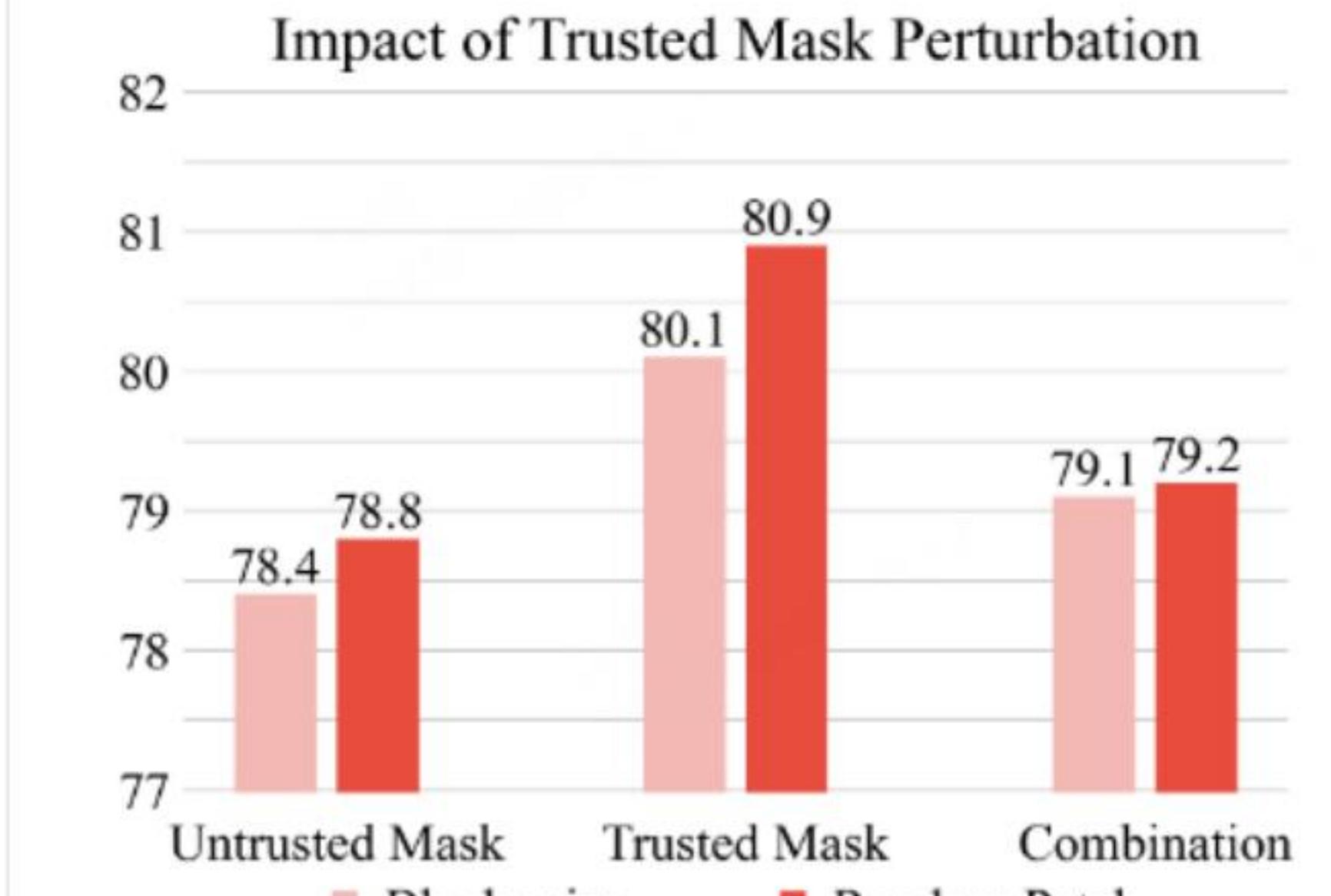
(a) Dispersion Metrics



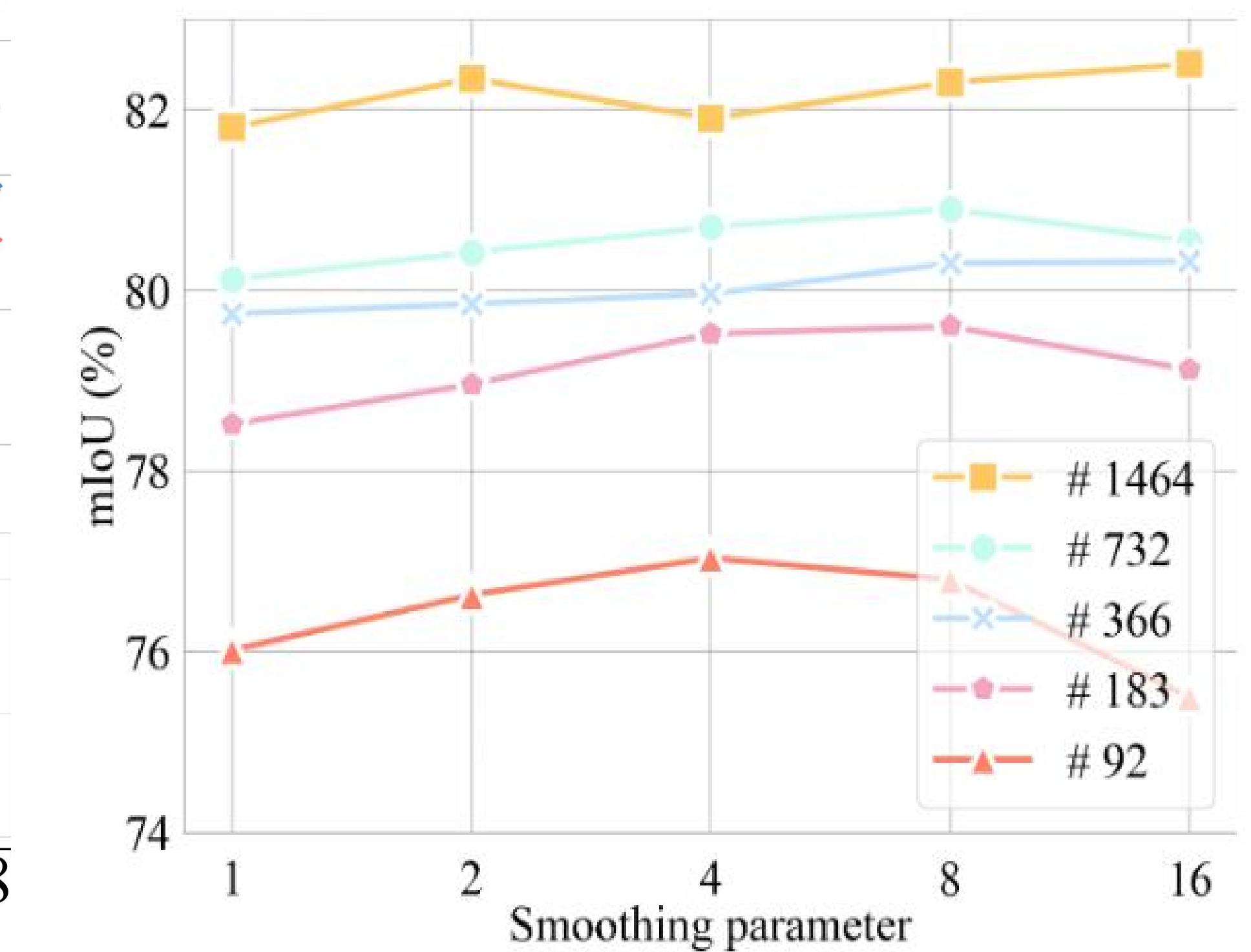
(b) Loss Smoothing Strategy



Epoch



(c) Trusted Mask Perturbation



The effectiveness of CSL