/— Problem
————————

» Model confidence scores are poorly calibrated,
failing to distinguish between correct and incorrect
predictions.

» existing methods must discard low-confidence
predictions, removes precisely the challenging and
informative data.
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———————— Contribution

® Exposes limitations of max-confidence selection.
® A unified confidence feature space framework.
® Sample-adaptive pseudo-label selection.

® [ everages supervision from unreliable predictions.

® Achieves state-of-the-art benchmark performance.
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PASCAL original ~ Train Size 1/16(92) 1/8(183) 1/4(366) 1/2(732) Full(1464) Ny 0
Supervised 321 x 321 45.4 53.1 61.2 68.4 152 =85
ST++ [68] 321 x 321 65.2 71.0 74.6 77.3 79.1 -
UniMatch [69] 321 x 321 75.2 5, 78.8 79.9 81.2
CorrMatch [50] 321 x 321 76.4 78.5 79.4 80.6 31.8 5
ESL [39] 513 x 513 71.0 74.1 78.1 79.5 81.8
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FPL [44] 513 xal13 69.3 N i s 79.0 - () w/o CSL (b)w/CSL Epoch
AllSpark [54] 513 x 513 76.1 78.4 79.8 80.8 82.1
CSL 321 x 321 76.8 79.6 80.3 80.9 82.3 More Pseudo-labels, Richer Supervision, Less Bias.
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Background

Revisiting Confidence-Based Pseudo-Label Selection

Challenges® Lack of theoretical grounding for confidence-accuracy correlation, leading to model

Contribution® First to prove that jointly optimizing max confidence and residual distribution
disentangles overconfidence, enabling sample-adaptive pseudo-labeling.
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-Advances the statistical foundation of pseudo-label selection. -



Sample-Wise Optimal Labeling via Spectral Optimization, Expanding Supervision

Trusted Masking

sample-Adaptive Pseudo-Label Selectio

Algorithm 1 Pseudocode of Prediction Convex Optimiza-
tion Separation in a PyTorch-like style.

# pmax: Pixel—-level maximum confidence
# vn: Pixel-level residual dispersion

maxTr (ST @' ®S),s.t.5 € 0, 1} xE
def PCOS (pmax, wvn): >

# combine pmax and vn into a feature matrix @

® = gtack([pmax, wvn], axis=1).T

# extract the top two eigenvectors from &

U, Sigma, VT = svd(®)

eig_vectors = VT[:, :2]

# constructing the optimal selection matrix

S = argmax (abs (eig_vectors), axis=l)

# calculate stats for each class

stats = [(@[S == ¢] i.mean{dim=1),

D[S == ¢g].std(dim=1)) for ¢ in range (2)]

# select the reliable class

mu, sigma = max(stats, key=lambda x:x[0])

# smooth loss weight

weight = exp(—((®-mu)/ (8+sigma) ) xx2)

weight = weight.prod(dim=0)

# preserving reliable prediction weights

weight [ (P[0, :]?}mu[ﬂj}”{@[l, s]1=mafl])] = 1

return weight

Spe=A (arg max_|u;(n)], (:)

i€{1,2}

o= Lo ({402

if (hn(c) — pe) > 0,Ve € {1,2}
w, otherwise

SCEHINELSCHILICE Confidence Separable Learning Framework

Trusted Masking Strategy

Algorithm 2 Pseudocode of Trusted Mask Perturbation in
a PyTorch-like style.

# x_w: Image with weak augmentation perturbation
# image_size: The length or width of the image
# block_size: The masking patch size

# masking.rate: The masking pixel ratio

# f: segmentation network

pred.w = f(x_w)

mask_w = pred.w.argmax (dim=1) .detach/()

# compute weights using PCOS on the projection
weight = PCOS (Projection(pred.w))

# create a reliability mask

relimask = (weight == 1)

# gain patch—-based perturbation mask (Eqg.
mask_.size = img.size // block.size

(L2}

cover_mask = (rand(mask_size, mask_size) <
masking_rate) .float ()
cover_mask = interpolate (cover_mask,

size=img.size, mode='nearest’)
# perturbation only for reliable predictions
cover_mask = cover_mask & reli_mask
# constructing perturbed images
¥om: = x_S;clone()
xm[cover_mask == 1] = 0
pred.m = f (x_m)
# calculated loss
criterion = CrossEntropyLoss ()
loss.m = criterion(pred.m, mask_w)
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-Confidence Separable Learning Framework -




Experiment Results

7 Problem

J

Comparison, ablation experiments, and visualization results
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The effectiveness of CSL




