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Preliminaries - Customization/Personalization

O Let’s revisit a commonly used few-shot fine-

Reconstruction Loss

tuning method: DreamBooth  seeee

B The essence of customization is to fine-tune a

model, pretrained on large-scale data, on a

smaller, concept-specific set to capture that

unseen concept. Input images (~3-5)

B Specifically, DreamBooth is optimized via:

ﬁldm(-’ﬁo; 9c) = ]EGNN(O,I),tNU(].,T) ||€ — €9, (zta t,To, (y))llg )
(1)

”A dogn
Lap(20;0c) = Ligm(xo; 0c)
+AEe e —eo, (2,1, 70, (57)ll3, (14)

Ve

Class-Specific Prior Preservation Loss

Class-Specific Prior Preservation Loss

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation. CVPR'23



Preliminaries - From Adversarial Attacks to Anti-Customization

O Let’s revisit the strongest first-order attack

method: Projected Gradient Descent (PGD)

adv adv adv
Tl =10, (:c +a-sgn(v$adv£x ,y;e)),
B PGD is formalized as: t+1 0,7 \ "t ; (@} )

(16)
B Anti-customization utilizes adversarial attacks against
g.eneratl.on, aiming t(.) distort th.e concepts lee.irned during §94Y — arg max min By Ly, (zo + 6;6,), )
fine-tuning by injecting protective perturbation delta. For 16]|cc<n fe

the optimal solution, this presents a saddle point problem:

B But this can be simplified. The key lies in the relationship v
between the model's training data and the adversarial data. Vv

@ For optimal performance, the training set should encompass
adequately trained adversarial samples.

§7% = arg max Ligm (o + 6;6.), (2)
16]]cc <7
@ However, this creates a bootstrap paradox: fine-tuned theta is
needed for optimal delta while delta is needed for optimal theta.

@ Thus, surrogate models fine-tuned on clean data are frequently

employed for simplification.

Towards Deep Learning Models Resistant to Adversarial Attacks. ICLR'18
Anti-DreamBooth: Protecting users from personalized text-to-image synthesis. ICCV’23



Preliminaries - Diffusion-based Purification

[J Let’s revisit the pioneering diffusion-based

purification method: DiffPure

M Pretrained unconditional diffusion models, e.g.,
DDPMs, can be inherently used for purification since
the distributions of clean and adversarial samples

converge over time during forward diffusion.

B DiffPure diffuses the input adversarial image at
timestep t” and denoises it back to a purified image.
In simplified discrete DDPM form, this can be
written as:

Pure(z°%) = Reverse(v/as (2*™)+v1 — auwe, t7,0;0,),
(3)
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SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations. ICLR'22

Diffusion Models for Adversarial Purification. ICML’22



Analysis - Anti-purification: Overall Formulation

O For ideal perturbations resistant to purification, we

first formalize our objective as:

B However, direct backpropagation is computationally

inefficient here.

O Alternatively, we decompose into stages. Interestingly,

two opposing objectives can accomplish this:

B By Eq.5, we can approximate Pure(x) = x, allowing

Eq.4 to degenerate into Eq.2 even under purification.

B By Eq.6, we resort to direct attacks against

purification, i.e., anti-purification.

0 We prefer Eq.6 rather than Eq.5, WHY?

2)

6°? = arg maxmin E, L4, (2o + 6;6.),
161l <7
624 = arg max min E, L;qm (Pure(zg + 6); 0.),

16]la<n 9

«K

4)

629" — arg min || Pure(zo + 8) — (2o + 0)[|oo, or (5)

5adfuf

max

Hé”oogn

= arg max || Pure(zp + 6) — (2o + 9) || 0o-

(6)



Analysis - Anti-purification: Overall Formulation

0 Eq.5 follows a paradigm called Adaptive Attacks. .q.

However, that is unlikely to work in the context
of Probabilistic Modeling.

5adfvf

max

B The difference between the clean and
adversarial images (which nearly overlap) is far
smaller than the range of purified outputs, and
the distributions of the purified clean and

adversarial images converge as # increases.

B In conclusion, we observe that probabilistic
models produce outputs that can become highly

unpredictable at the fine scale required by

18]loc <7

= arg max || Pure(zg + 0) — (2o + 0)|| o

t-SNE Visualization

®

i

Clean Image

Adversarial Image

[t = 50] Purified Clean Images

[t = 50] Purified Adversarial Images
[t = 100] Purified Clean Images

e [t = 100] Purified Adversarial Images

min = argmin || Pure(zo + ) — (2o + 6)[|os, or (5)

(6)

adversarial attacks, thereby diminishing the  Fjgure 2. t-SNE [50] visualization (perplexity = 10) of 4x 100 pu-

effectiveness of adaptive attacks.

rified images obtained using DiffPure [31] with different timesteps
for clean and adversarial images.



Analysis - Anti-purification: Overall Formulation

O Now we choose Eq.6 as our objective, i.e., Anti-Customization

we want the outputs of purification to be  Lim(z0:8c) = Ecunon,i~u,1) lle = €0, (21,8, 70, (9))15
(D)

distorted as much as possible. 599 — arg max min By Ligm (z0 + 6:0.),  (2)

||5||oo5"7

0 A natural idea is to transfer adversarial

. L . N/
attacks from anti-customization to anti- N/
purification. Anti-Purification
L aapm (203 0p) = Eenro1),e~u(1,7) ||€ — €0, (¢, t)||§ :
(7
® But direct adaptation also 6% = arg max min B, Ligm(2o + 0300), ()

16| o <7

fails, .. WHY?



Analysis - Anti-purification: Why Harder?

MSE of Intermediate Outputs Between Clean and Adv. Images at Varying Timesteps.

O Through experiments, we analyze the
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Analysis - Anti-purification: Why Harder?

Clean

O Reason 1: Lack of Vulnerable Components

B Attacks targeting LDMs/SD are easier due to their more
vulnerable encoders. In contrast, the only component in
DDPMs, the UNet, is extremely robust.

Latent-Adv.

Figure 3. Attacks against DreamBooth [38] on UNet are much
harder. Unlike vanilla pixel-space attacks (a. — d.), latent-space

Latent Space (c onditi onina\ attacks (b. — e.) cannot target the vulnerable VAE encoder. Here,
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Diffusion Process ———>» Eemanth our experiments, we directly replace b. with e. during fine-tuning.
Ma MSE of Intermediate Outputs Between Clean and Adv. Images at Varying Timesteps.

Denoising U-Net €g 2T Text 7| — Timestep 10

Timestep 20 \
RepreS **1 —— Timestep 30
entations

—— Timestep 40 A\

251 —— Timestep 50
—— Timestep 60
100 Timestep 70
—— Timestep 80
Timestep 90

MSE between Clean and Adv. Images

.

denoising step crossattention  switch  skip connection concat _ _ _
Figure 4. Mean Squared Errors of intermediate outputs between
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varying timesteps. See Appendix B.2 for details.



Analysis - Anti-purification: Why Harder?

[0 Reason 2: Training-free Frozen Parameters

B Unlike anti-customization which targets fine-tuning by
data poisoning, anti-purification targets a training-free

editing task.

[ Reason 3: Fixed High Timestep Denoising

B The purification process can be viewed as a generation

process where high-timestep denoising is fixed.

B In cases where vulnerable components are absent and
parameters are frozen, conducting a Ly,,,-based attack
for timesteps beyond # is not directly meaningtul, and
attempting to achieve semantic structural changes by

adjusting the input at low timesteps is also unfeasible.
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Figure 5. Effectiveness of MasaCtrl [3] on adversarial images.
The loss attack makes little difference except that the lower right
image of e. and f. has slight noise in the background.
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Method - AntiPure

O Patch-wise Frequency Guidance (PFG)

B Unlike low-frequency semantic structures,

Spatial

consistency in high-frequency components is
harder to guarantee, rendering them less

controllable during purification.

B PFG aims to enhance the high-frequency

Frequ

components of the purification model’s prediction,
indirectly reinforcing the adv. perturbation’s high-

frequency elements.

Tt = Vo (zo + 5303“) + V1 — Gie, (8)

Patch-wise

Figure 7. Differences in the spatial and frequency domains before

Ty = (mt — V1 —oueq (mf? t))/ V Q. ©) and after DDPM-purification. Pseudocolor transformation is ap-
4 5= 1 plied to the DCT spectrogram for better visualization.
L fre(T; 67%) = U(IE‘.pS—2 Z PatchDCT(Zg, $)m.n),
m,n==:

2

(10)



Method - AntiPure

O Erroneous Timestep Guidance (ETG)

B The structure of images cannot be obviously

altered because they are fixed during high-timestep 'a

denoising.

B However, ETG can identify inputs for which the
UNet struggles to select the appropriate actions

across timesteps.

Ee’r’r—t($0; 5ad'u) - - I|69($ta te'r'r) — € (-Tts t)”g . (11)

[0 Overall Attack

Epgd(mo; 5adv) — ]Ee,t (‘Cddpm + Aleat_lﬁfre + /\26£€w—t) )
(12)
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Figure 6. Overview diagram of AntiPure. AntiPure mitigates the
negative impact of benign priors (Sec. 4.2.2) and limited timesteps
(Sec. 4.2.3) on the attack by introducing Patch-wise Frequency
Guidance L,. and Erroneous Timestep Guidance L;—err-.



Experiments

[0 Quantitative Results [1]

Dataset Perturbation FID1 ISMJ| (FDFR) BRISQUET Dataset Workflow FIDT ISM| (FDFR) BRISQUE?

AdvDM [25]  77.51 0.6561 (0.10) 31.33 AdvDM [25] 95.38  0.6302 (0.09) 38.20
Mist [24] 70.23  0.6688 (0.07) 37.00 CSeAHG Mist [24] 85.09  0.6461 (0.07) 40.91
CelebA-HQ  Anti-DB [51]  78.84  0.6422 (0.10) 31.76 Anti-DB [51]  104.18  0.6215(0.12) 38.18
SimAC [52] 67.37 0.6734 (0.09) 33.73 SimAC [52] 75.46  0.6487 (0.06) 38.77
AntiPure (Ours) 81.15 0.6112 (0.10) 43.60 AntiPure (Ours) 109.63  0.5839 (0.07) 40.01
AdvDM [25]  83.90  0.5923 (0.09) 37.42 AdvDM [25] 10543  0.5799 (0.07) 58.02
Mist [24] 78.34  0.5940 (0.07) 43.60 Mist [24] 90.66  0.6046 (0.07) 62.22
VGGFace2 Anti-DB [51] 90.29  0.5938 (0.06) 38.35 VGGFace2 Anti-DB [51] 117.89  0.5723 (0.06) 58.56
SimAC [52] 7521  0.6053 (0.09) 40.27 SimAC [52] 94.89  0.6018 (0.07) 59.99
AntiPure (Ours) 90.77  0.5475 (0.05) 46.01 AntiPure (Ours) 127.67  0.5428 (0.04) 69.97

Table 1. Comparison of DreamBooth’s [38] output quality for dif- Table 2. Comparison of LoRA’s [17] output image quality for dif-

ferent perturbation methods following the P-C workflow. ferent perturbation methods following the P-C workflow.



Experiments

[0 Quantitative Results [2]

Perturbation Workflow FIDT ISM| (FDFR) BRISQUET
None (Original) C (Iter=0) 37.43  0.6935 (0.11) 15.86
P(Iter=10)-C  124.62 0.6020 (0.10) 32.74
) P(Iter=20)-C  84.83  0.6352 (0.09) 27.47
Anti-DB [51]
P(Iter=30)-C  81.22  0.6473 (0.08) 29.33
P(Iter=40)-C  77.30  0.6391 (0.09) 30.34
P(Iter=10)-C  54.45 0.6362 (0.07) 40.27
P(Iter=20)-C  59.97 0.6271 (0.08) 44.63
AntiPure (Ours)
P(Iter=30)-C  68.84  0.6075 (0.08) 47.68
P(Iter=40)-C  78.21  0.5994 (0.09) 47.54

Table 3. Comparison of DreamBooth’s [38] output image quality
for different purification iterations following the P-C workflow on

CelebA-HQ.

Perturbation CelebA-HQ VGGFace2
Alex-LPIPS| VGG-LPIPS| Alex-LPIPS| VGG-LPIPS|
AdvDM [25] 0.2024 0.3061 0.2343 0.3920
Mist [24] 0.1470 0.2759 0.2208 0.5222
Anti-DB [51] 0.2019 0.3319 0.2726 0.4054
SimAC [52] 0.1754 0.3046 0.2146 0.4120
AntiPure (Ours) 0.1392 0.2843 0.1758 0.3884

Table 4. Comparison of Learned Perceptual Image Patch Similar-
ity (LPIPS) [60] between adversarial images obtained by different

perturbation methods and the original images.



Experiments

[0 Ablation Studies

Dataset Objective FIDt ISMJ] (FDFR) BRISQUET Dataset Objective FIDT ISMJ (FDFR) BRISQUET
Ladpm 69.06 0.6293(0.09) 42.45 L ddpm 93.79  0.6176 (0.05) 42.19
m re 65.6 0.6253 (0.08 42.84 Ladpm + L fre 81.32  0.5848 (0.05 42.24
CelebAHQ  rm T £ 7 0.08) CelebA-HQ ~m =1 0.05)
Ladpm + Lerr—t 7442 0.6489 (0.10) 37.01 Ladpm + Lerr—t 9263 0.6177 (0.09) 43.22
AntiPure (Ours) 81.15 0.6112 (0.10) 43.60 AntiPure (Ours) 109.63  0.5839 (0.07) 40.01
L ddpm 76.32  0.5958 (0.07) 39.42 L ddpm 93.10  0.5859 (0.08) 61.79
: Ladom + L fre 110.87 0.5556 (0.06 66.01
VGGFace? Lddpm + L tre 7490 0.5644 (0.07) 45.57 VGGFace? ddp f ( )
Ladpm + Lerr—t 7675 0.5901 (0.06) 40.75 Ladpm + Lerr—t 10224 0.5717 (0.06) 61.10
AntiPure (Ours) 90.77  0.5475 (0.05) 46.01 AntiPure (Ours) 127.67 0.5428 (0.04) 69.97
Table 6. Ablation Study on DreamBooth’s [38] output qual- Table 7. Ablation Study on LoRA’s [17] output quality for differ-
ity for different AntiPure guidance following the Purification- ent AntiPure guidance following the Purification-Customization

Customization (P-C) workflow. (P-C) workflow.



Experiments

0 Qualitative Results - Visualization
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Figure 8. Visualization of DreamBooth’s outputs after the P-C
workflow.

Figure 12. Comparison of DreamBooth’s outputs on CelebA-HQ for different perturbation

Customization (P-C) workflow.

methods following the Purification-



Experiments

[0 Qualitative Results - Visualization
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