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Towards Robust Defense against Customization via 
Protective Perturbation Resistant to Diffusion-based Purification

 a). Protective perturbations use small noises to 

distort the outputs of fine-tuned diffusion models. 

 b). However, existing methods can be removed 

by diffusion-based purification. 

 c). We propose a simple diagnostic method called 

AntiPure, which achieves protective perturbations 

resistant to purification and makes customization 

outputs more distinguishable.
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 Let’s revisit a commonly used few-shot fine-

tuning method: DreamBooth

◼ The essence of customization is to fine-tune a 

model, pretrained on large-scale data, on a 

smaller, concept-specific set to capture that 

unseen concept.

◼ Specifically, DreamBooth is optimized via:

Preliminaries – Customization/Personalization

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation. CVPR’23



 Let’s revisit the strongest first-order attack

method: Projected Gradient Descent (PGD)

◼ PGD is formalized as:

◼ Anti-customization utilizes adversarial attacks against 

generation, aiming to distort the concepts learned during 

fine-tuning by injecting protective perturbation delta. For 

the optimal solution, this presents a saddle point problem:

◼ But this can be simplified. The key lies in the relationship 

between the model's training data and the adversarial data.  

◆ For optimal performance, the training set should encompass 

adequately trained adversarial samples. 

◆However, this creates a bootstrap paradox: fine-tuned theta is 

needed for optimal delta while delta is needed for optimal theta.

◆ Thus, surrogate models fine-tuned on clean data are frequently 

employed for simplification. 

Preliminaries – From Adversarial Attacks to Anti-Customization

Towards Deep Learning Models Resistant to Adversarial Attacks. ICLR’18
Anti-DreamBooth: Protecting users from personalized text-to-image synthesis. ICCV’23



 Let’s revisit the pioneering diffusion-based

purification method: DiffPure

◼ Pretrained unconditional diffusion models, e.g., 

DDPMs, can be inherently used for purification since 

the distributions of clean and adversarial samples 

converge over time during forward diffusion. 

◼ DiffPure diffuses the input adversarial image at 

timestep tp and denoises it back to a purified image. 

In simplified discrete DDPM form, this can be 

written as:

Preliminaries – Diffusion-based Purification

SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations. ICLR’22
Diffusion Models for Adversarial Purification. ICML’22



 For ideal perturbations resistant to purification, we 

first formalize our objective as:

◼ However, direct backpropagation is computationally 

inefficient here.

 Alternatively, we decompose into stages. Interestingly, 

two opposing objectives can accomplish this:

◼ By Eq.5, we can approximate Pure(x) ≈ x, allowing 

Eq.4 to degenerate into Eq.2 even under purification.

◼ By Eq.6, we resort to direct attacks against 

purification, i.e., anti-purification.

We prefer Eq.6 rather than Eq.5, WHY?

Analysis – Anti-purification: Overall Formulation



 Eq.5 follows a paradigm called Adaptive Attacks. 

However, that is unlikely to work in the context

of Probabilistic Modeling.

◼ The difference between the clean and 

adversarial images (which nearly overlap) is far 

smaller than the range of purified outputs, and 

the distributions of the purified clean and 

adversarial images converge as tp increases. 

◼ In conclusion, we observe that probabilistic 

models produce outputs that can become highly 

unpredictable at the fine scale required by 

adversarial attacks, thereby diminishing the 

effectiveness of adaptive attacks.

Analysis – Anti-purification: Overall Formulation



Now we choose Eq.6 as our objective, i.e.,

we want the outputs of purification to be

distorted as much as possible.

 A natural idea is to transfer adversarial

attacks from anti-customization to anti-

purification.

⚫ But direct adaptation also

fails, …WHY?

Analysis – Anti-purification: Overall Formulation

Anti-Customization

Anti-Purification



 Through experiments, we analyze the 

differences between anti-customization 

and anti-purification, identifying three 

core characteristics of purification 

models that make anti-purification 

more challenging: 

◼ 1) lack of vulnerable network components, 

◼ 2) training-free frozen parameters, and 

◼ 3) fixed high-timestep denoising.

Analysis – Anti-purification: Why Harder?



Analysis – Anti-purification: Why Harder?

 Reason 1: Lack of Vulnerable Components

◼ Attacks targeting LDMs/SD are easier due to their more 

vulnerable encoders. In contrast, the only component in 

DDPMs, the UNet, is extremely robust. 



Analysis – Anti-purification: Why Harder?

 Reason 2: Training-free Frozen Parameters

◼ Unlike anti-customization which targets fine-tuning by 

data poisoning, anti-purification targets a training-free 

editing task.

 Reason 3: Fixed High Timestep Denoising

◼ The purification process can be viewed as a generation 

process where high-timestep denoising is fixed.

◼ In cases where vulnerable components are absent and 

parameters are frozen, conducting a Lddpm-based attack 

for timesteps beyond tp is not directly meaningful, and 

attempting to achieve semantic structural changes by 

adjusting the input at low timesteps is also unfeasible.



 Patch-wise Frequency Guidance (PFG)

◼ Unlike low-frequency semantic structures, 

consistency in high-frequency components is 

harder to guarantee, rendering them less 

controllable during purification.

◼ PFG aims to enhance the high-frequency 

components of the purification model’s prediction, 

indirectly reinforcing the adv. perturbation’s high-

frequency elements.

Method – AntiPure



 Erroneous Timestep Guidance (ETG)

◼ The structure of images cannot be obviously 

altered because they are fixed during high-timestep

denoising. 

◼ However, ETG can identify inputs for which the 

UNet struggles to select the appropriate actions 

across timesteps.

Overall Attack

Method – AntiPure



Experiments

Quantitative Results [1]



Experiments

Quantitative Results [2]



Experiments

 Ablation Studies



Experiments

Qualitative Results - Visualization



Experiments

Qualitative Results - Visualization
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