

西安交通大学
XIAN JIAOTONG UNIVERSITY

ICCV
OCT 19-23, 2025
HONOLULU
HAWAII

D3: Training-Free AI-Generated Video Detection Using Second-Order Features

ICCV 2025

Chende Zheng, Ruiqi Suo, Chenhao Lin, Zhengyu Zhao,
Le Yang, Shuai Liu, Minghui Yang, Cong Wang, Chao Shen

AI-Video Detection: Background

➤ AI-generated Videos: from GANs to Diffusions

- More diverse scenes
- Advanced authenticity
- Unseen generators

v.s.

- Unclear detection principle
- Biased datasets
- Limited computing resources

2017

2025

AI-Video Detection: Motivation

➤ Existing Limitations - Temporal Artifact Analysis Gap

- **Low-level Artifacts** (*Pixel domain modeling*)
 - Example: Up-sampling artifacts
- **Statistical Attribution** (*Spectra domain modeling*)
 - Example: Spectral artifacts analysis

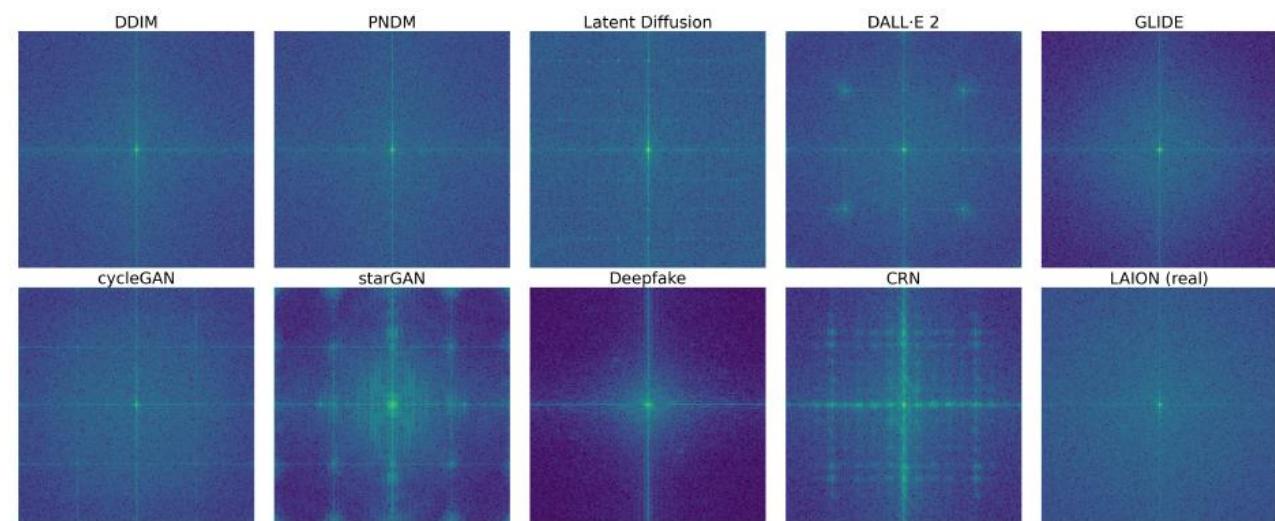
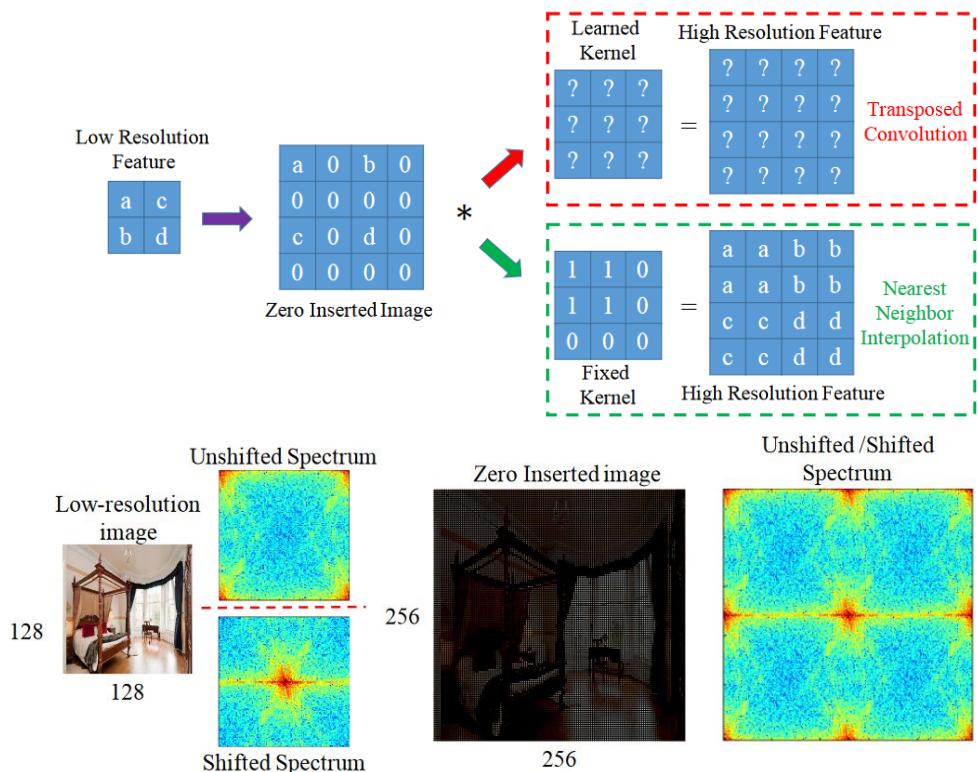



Figure 1: **Generator artifacts:** noise residuals power spectrum of images from 9 generative models and 1 real dataset. Top row: 5 Diffusion Models. Bottom row: 2 GANs, cycleGAN and starGAN, 2 CNN-based generators, Deepfake and CRN, and 1 real dataset, LAION.

AI-Video Detection: Analysis

➤ Temporal artifacts based on Newtonian mechanics

Second-order system
(Newtonian mechanics)

$$A_2 \frac{d^2x(t)}{dt^2} + A_1 \frac{dx(t)}{dt} + A_0 x(t) = u(t)$$

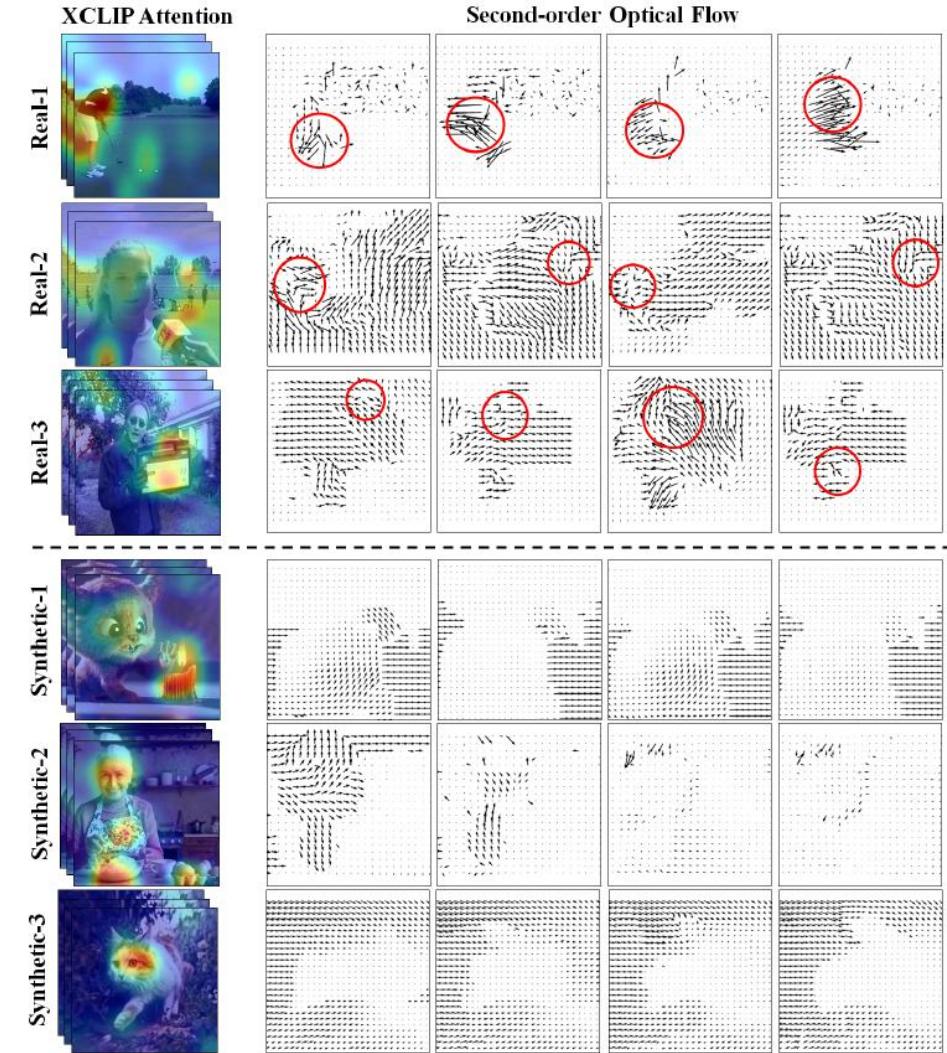
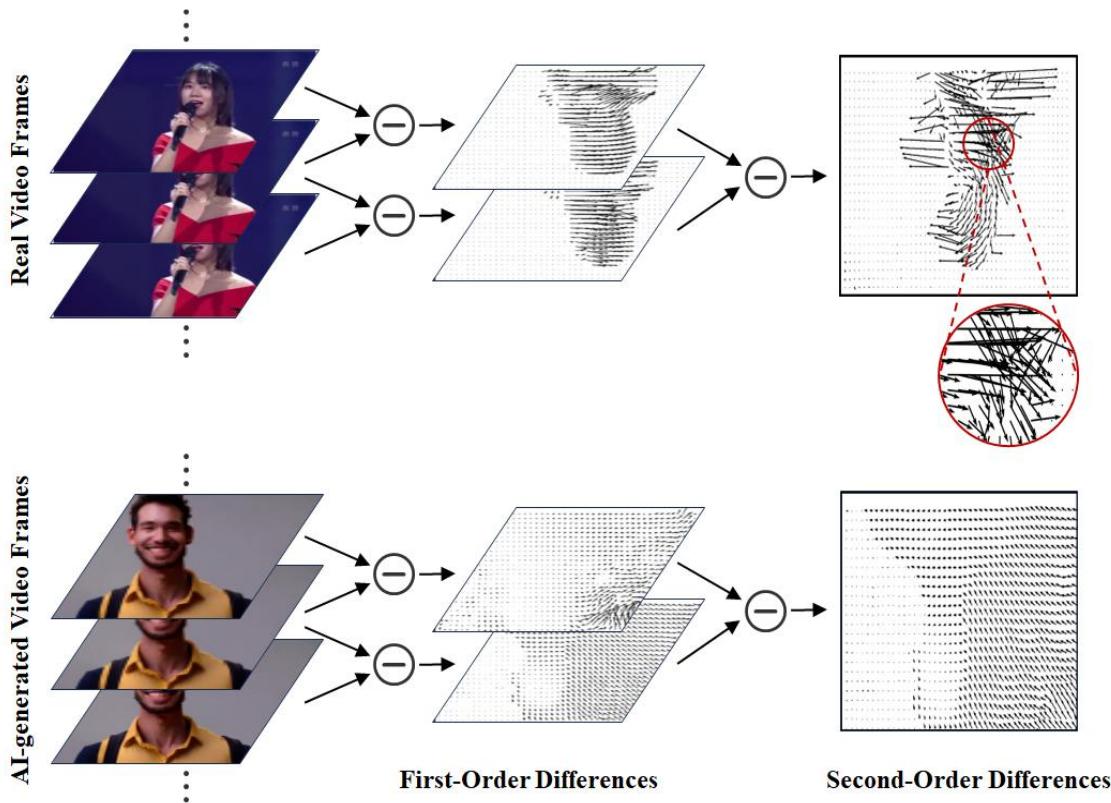
Second-order Central Difference to
approximate the acceleration

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
$$= \frac{f'(x) - f'(x-h)}{h}$$

2nd-order
flow

$$X_{diff} = \frac{OF(x_{t+1}, x_{t+2}) - OF(x_t, x_{t+1})}{\Delta t^2}$$

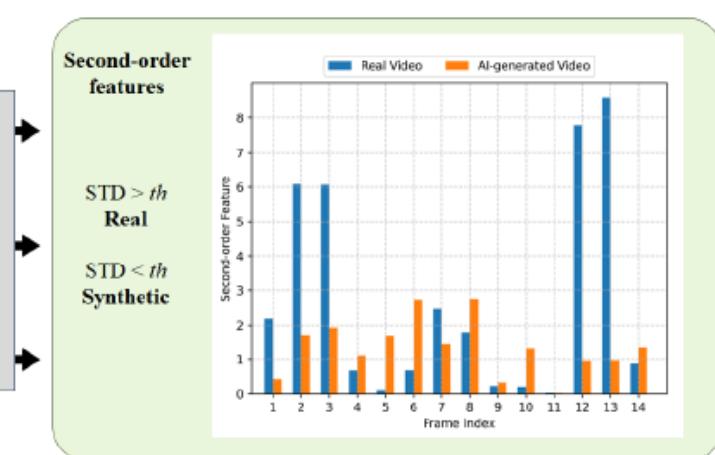
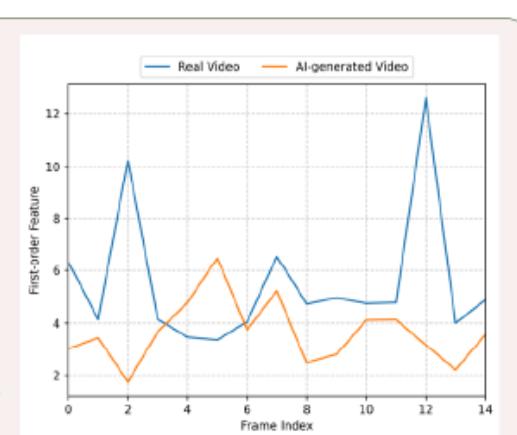
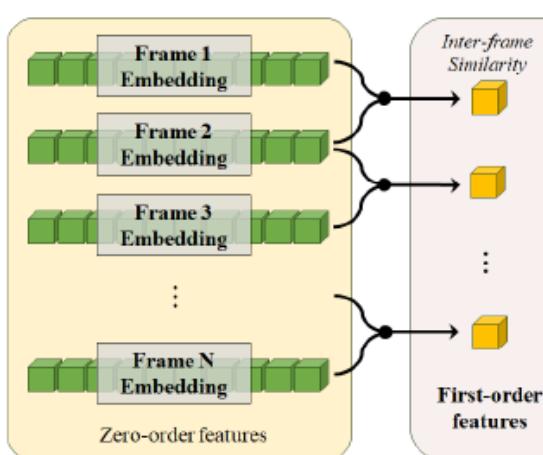
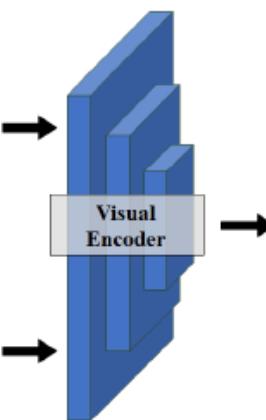
2nd-order
semantics



$$F_2(k) = \frac{F_1(k) - F_1(k-1)}{\Delta t}, \quad k = 2, \dots, T-1$$

- Synthetic videos exhibit **hyper-smooth transitions** violating Newtonian dynamics (e.g., unnatural acceleration patterns)
- Realistic scenarios can be simulated using **second-order systems**.

AI-Video Detection: Analysis

$$\text{2nd-order Flow} \quad X_{diff} = \frac{OF(x_{t+1}, x_{t+2}) - OF(x_t, x_{t+1})}{\Delta t^2}$$





- Real: **Perturbations** in local regions
- Generated: **Smoother** regions overall

AI-Video Detection: Method

- Real videos contain **high-order** features
- AI videos contains **unusual high-order** features

- Using **pretrained visual encoders** to extract features by frames.
- Using **second-order differential feature** to realize general detection.

(a) Zero-order feature extraction

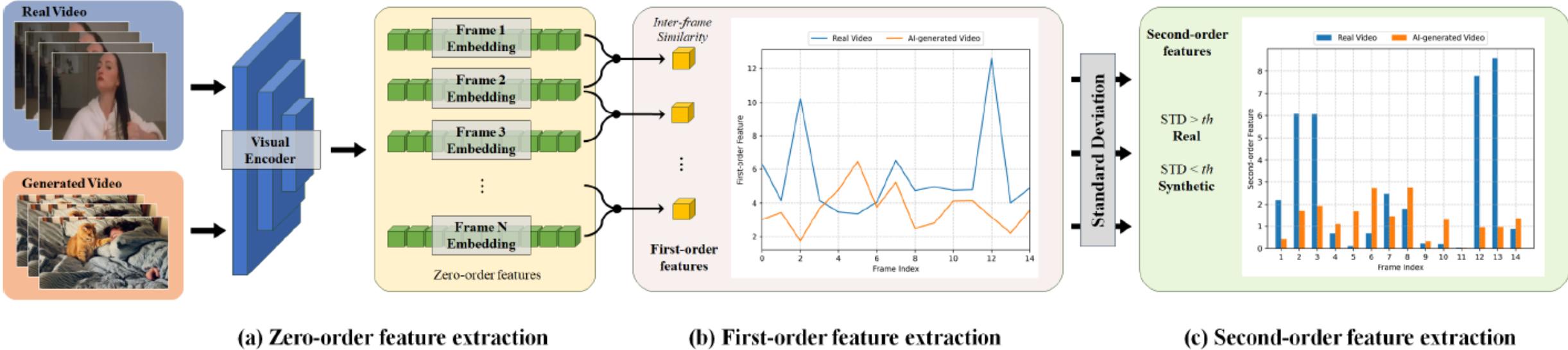
(b) First-order feature extraction

(c) Second-order feature extraction

AI-Video Detection: Method

➤ **Zero-order Feature**
use visual encoders to extract
features by frames

$$F^0 = \{F_1^0, \dots, F_T^0\}$$


➤ **First-order Feature**
Calculate inter-frame differences
via *L2 Distance*

$$F_1^L(k) = \frac{dis(F_k^0, F_{k+1}^0)}{\Delta t}$$

➤ **Second-order Feature**
Detection metric: Standard deviation
of second-order features

$$F_2(k) = \frac{F_1(k) - F_1(k-1)}{\Delta t}$$
$$\sigma(F_2) = \sqrt{\frac{1}{T-3} \sum_{i=2}^{T-1} (F_2(i) - \mu)^2}$$

AI-Video Detection: Method

- Use visual encoders to extract features by frames

$$F^0 = \{F_1^0, \dots, F_T^0\}$$

- Calculate inter-frame differences via *L2 Distance*

$$F_1^L(k) = \frac{dis(F_k^0, F_{k+1}^0)}{\Delta t}$$

- Evaluate standard deviation of second-order features

$$F_2(k) = \frac{F_1(k) - F_1(k-1)}{\Delta t}$$
$$\sigma(F_2) = \sqrt{\frac{1}{T-3} \sum_{i=2}^{T-1} (F_2(i) - \mu)^2}$$

AI-Video Detection: Results

- We perform the detection experiments on baselines and our **training-free** method across 4 different datasets: *GenVideo*, *EvalCrafter*, *VideoPhy*, and *VidProM*.

Detection	Datasets (AP↑)										mAP	
	Method	Level	Crafter	Gen2	HotShot	Lavie	MSE	MV	MSO	Show-1	Sora	WS
FID	Image	92.41	93.27	<u>86.10</u>	83.68	<u>91.50</u>	93.67	92.24	<u>90.61</u>	74.95	<u>82.24</u>	<u>88.07</u>
NPR	Image	97.02	96.35	<u>40.17</u>	22.37	<u>84.67</u>	96.79	96.53	21.61	<u>90.55</u>	66.51	71.26
STIL	Image	85.82	93.19	40.61	53.24	58.99	94.94	71.62	47.73	22.35	61.91	63.04
MINITIME	Video	88.62	60.66	39.03	82.29	23.85	74.79	74.33	41.08	16.92	72.25	57.38
FTCN	Video	95.41	97.18	37.47	44.90	79.71	99.75	97.05	17.33	83.69	66.86	71.94
TALL	Video	87.85	93.47	44.00	59.07	51.11	92.09	63.63	51.06	15.82	64.43	62.25
XCLIP	Video	97.32	99.44	44.68	72.69	88.00	99.96	97.53	38.37	71.08	74.00	78.31
AIGVDet	Video	75.87	89.98	51.81	<u>88.62</u>	70.91	56.22	67.93	72.59	65.70	64.96	70.46
Demamba	Video	<u>97.91</u>	99.16	52.97	76.72	82.83	<u>99.80</u>	<u>98.42</u>	56.24	77.75	74.81	81.66
Our D3	Video	98.53	<u>99.39</u>	98.52	97.22	97.12	99.52	98.68	99.18	99.91	96.49	98.46

Table 1. Detection results on Video datasets. Our D3 is training-free, while the baselines are trained on real videos from Youku-mPLUG [49] and AI-generated videos from Pika [8], following the setting in Demamba [17]. **Bold** represents the best and underline represents the second best.

AI-Video Detection: Results

- We perform the detection experiments on baselines and our **training-free** method across 4 different datasets: *GenVideo*, *EvalCrafter*, *VideoPhy*, and *VidProM*.

Method	Datasets (AP↑)														mAP
	MV	Floor32	Gen2	Gen2-D	HotShot	LaVie-V	LaVie-I	Mix-SR	MSE	Pika	Pika-v1	Show-1	VC	ZS	
FID	98.29	96.4	97.36	98.68	89.9	92.92	84.19	98.51	95.74	99.49	99.17	96.77	95.71	95.18	95.59
NPR	99.96	99.77	<u>99.34</u>	99.95	47.39	76.45	72.23	99.67	98.54	99.97	99.93	69.82	99.68	<u>98.21</u>	90.07
AIGVDet	56.50	67.84	71.86	74.24	51.46	73.81	70.72	57.64	71.00	94.95	92.92	72.41	64.58	67.00	70.50
Demamba	99.49	91.76	96.98	99.27	34.60	56.89	37.85	97.49	71.33	98.69	99.33	26.83	94.30	64.39	76.37
Our D3	<u>99.52</u>	<u>98.68</u>	99.46	<u>99.74</u>	98.52	97.79	98.48	<u>99.16</u>	<u>97.13</u>	99.43	<u>99.55</u>	99.18	<u>98.77</u>	98.83	98.87

Table 2. Detection results on 14 EvalCrafter datasets.

Method	Datasets (AP↑)										mAP
	LaVie	OpenSora	CogVideoX-5B	CogVideoX	Dream-Machine	Gen-2	Pika	SVD	VC2	ZeroScope	
FID	<u>96.51</u>	87.9	<u>91.41</u>	<u>93.34</u>	97.5	98.35	99.55	95.66	<u>96.03</u>	<u>90.6</u>	<u>94.69</u>
NPR	63.72	<u>88.78</u>	81.99	81.37	99.86	99.90	99.91	99.54	60.21	78.23	85.35
AIGVDet	61.06	59.07	58.95	63.15	59.27	61.55	92.96	53.73	58.22	63.11	63.11
Demamba	28.80	16.00	24.35	22.97	94.03	97.52	96.75	87.28	23.86	23.17	51.47
Our D3	98.49	98.55	99.03	98.87	<u>99.54</u>	<u>99.87</u>	<u>99.70</u>	<u>98.75</u>	99.46	99.38	99.16

Table 3. Detection results on 10 VideoPhy datasets.

AI-Video Detection: Results

- We perform the detection experiments on baselines and our **training-free** method across 4 different datasets: *GenVideo*, *EvalCrafter*, *VideoPhy*, and *VidProM*.

Method	Datasets (AP↑)						mAP
	MSE	OS	Pika	ST2V	T2VZ	VC2	
FID	<u>91.35</u>	87.68	<u>99.59</u>	97.87	68.51	<u>85.92</u>	88.49
NPR	87.04	<u>89.85</u>	99.98	89.88	88.93	70.79	87.75
AIGVDet	63.33	62.12	66.07	55.46	63.49	52.15	60.44
Demamba	58.73	85.87	99.34	86.48	<u>79.62</u>	80.28	81.72
Our D3	96.85	97.85	99.14	<u>93.13</u>	45.11	98.70	<u>88.46</u>

Table 4. Detection results on 6 VidProM datasets.

- Existing video generators **cannot accurately model the second-order features** of real videos.
- We can **realize accurate detection by calculating the second-order features** using mathematical methods.

AI-Video Detection: Results

- We conduct an ablation study to see how the choice of visual encoder and first-order calculation method affects D3's performance.

Visual Encoder	GenVideo		EvalCrafter		VideoPhy		VidProM	
	L2	Cos	L2	Cos	L2	Cos	L2	Cos
DINOv2-B	95.84	87.17	96.76	89.31	93.98	82.14	82.17	73.23
DINOv2-L	94.92	85.33	95.84	87.31	92.49	79.12	80.90	70.83
CLIP-B/16	<u>97.00</u>	87.82	97.63	89.82	97.01	86.24	84.79	75.77
XCLIP-B/16	97.72	<u>91.30</u>	98.24	<u>92.81</u>	<u>97.14</u>	<u>89.10</u>	87.08	79.87
CLIP-B/32	96.73	87.87	97.26	89.53	96.61	87.04	83.97	75.52
XCLIP-B/32	96.99	90.43	<u>97.72</u>	92.31	96.35	88.74	<u>85.57</u>	<u>79.62</u>
ResNet-18	96.39	89.73	97.26	91.64	95.67	86.83	81.59	75.68
VGG-16	96.97	92.63	<u>97.84</u>	94.16	97.50	91.21	81.54	77.02
EfficientNet-B4	94.28	85.51	95.49	88.08	92.46	82.40	80.73	73.00
MobileNet-V3	95.47	87.14	96.48	89.50	94.70	84.71	80.76	73.74

- *L2 Distance* contains more inter frame features.
- **Large-scale**, pre-trained encoders (e.g. CLIP or XCLIP) perform better.
- Nonetheless, lightweight visual encoders **still possessing excellent performance**.

AI-Video Detection: Results

- We compared the **robustness to post-processing operations** and **real-time efficiency** of the baselines and D3.

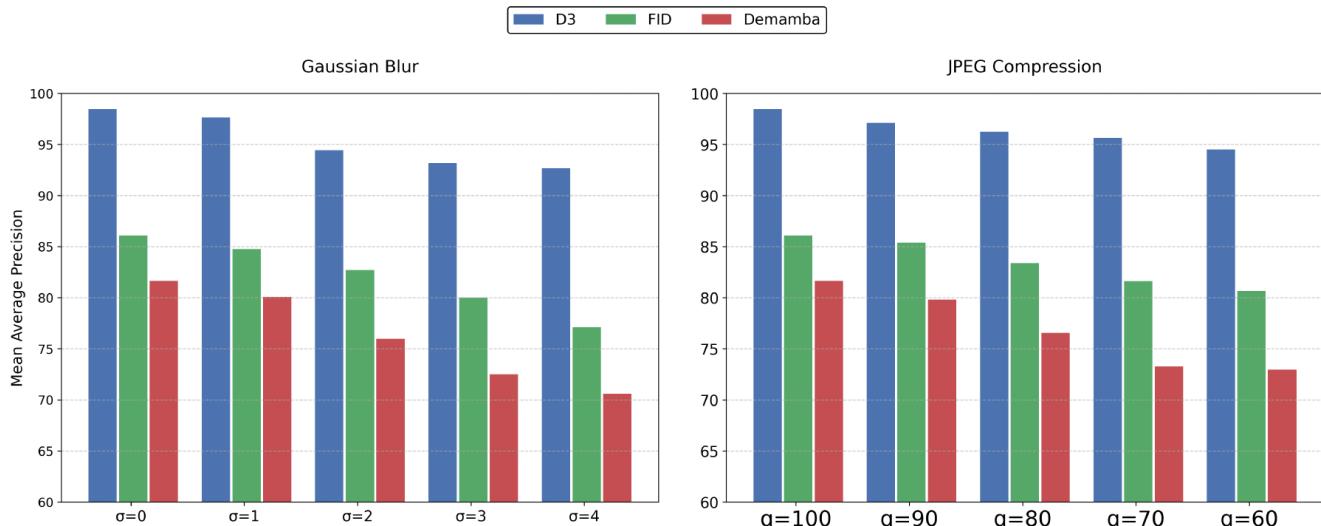


Figure 3. Detection results (mAP) of baselines and D3 against post-processing operations on Genvideo.

Detection Method	Time (s,↓)			mAP↑
	Preprocess	Train	Inference	on GenVideo
FID	Free	415	213	88.07
NPR	Free	256	188	71.26
AIGVDet	500	642	74	70.46
Demamba	Free	196	91	81.66
D3 (XCLIP-B/16)	Free	Free	56	98.46
D3 (MobileNet-v3)	Free	Free	40	<u>95.47</u>

Table 5. Efficiency results on GenVideo with 1000 video samples and batch size of 1. The preprocessing overhead of AIGVDet comes from the optical flow extraction using RAFT. For image-level methods (FID, NPR), 8 images form a video.

- D3 demonstrates **strong robustness** and **computational efficiency**
- Attributed to **second-order feature hypothesis** and **training-free** framework.

Thank you for listening!

Wechat

arXiv

github