

LUND UNIVERSITY

CHALMERS
UNIVERSITY OF TECHNOLOGY

WASP

WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Certifiably Optimal Anisotropic Rotation Averaging

Carl Olsson¹

Yaroslava Lochman²

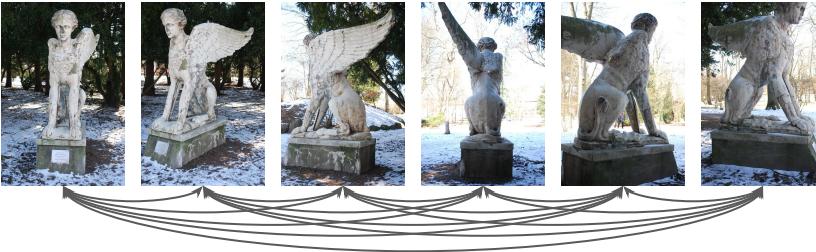
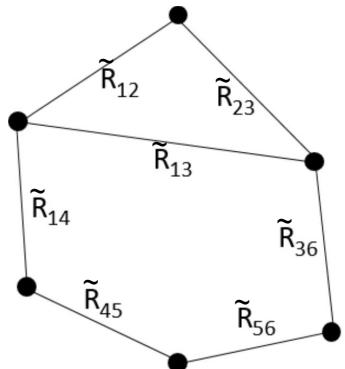
Johan Malmpert¹

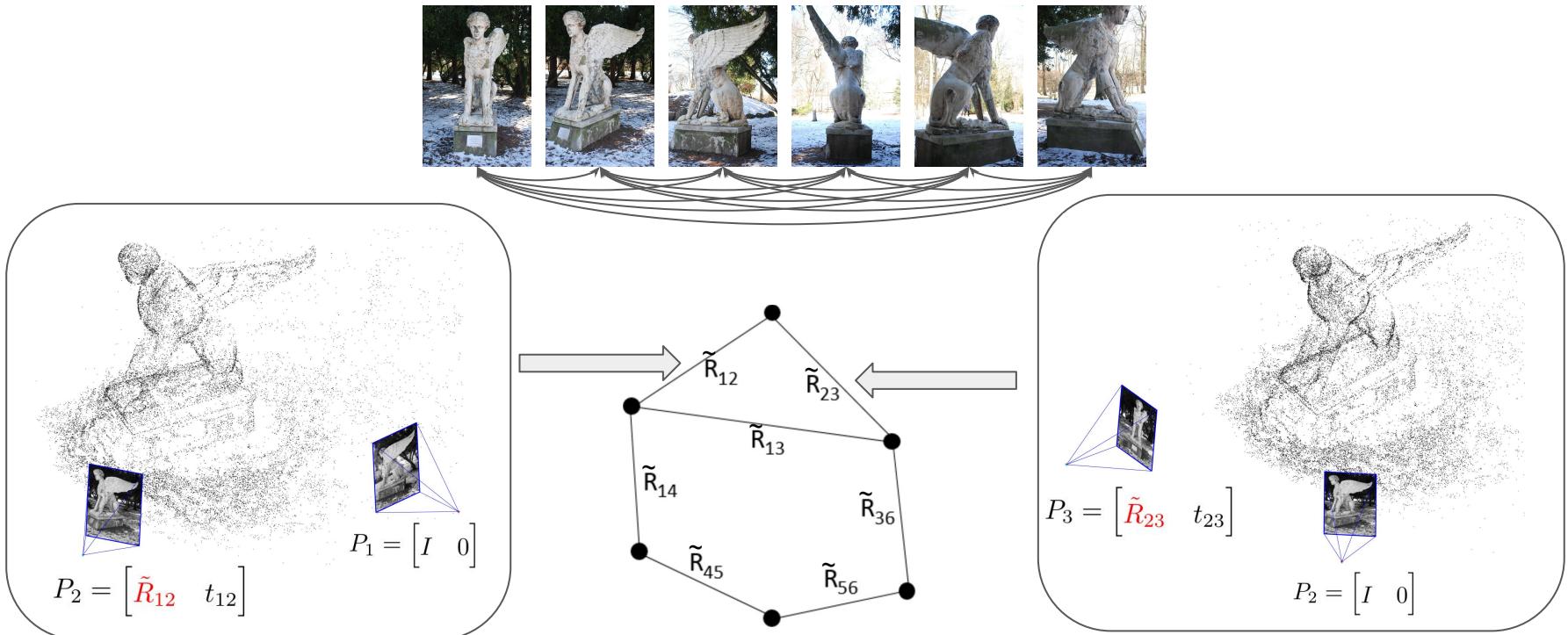
Christopher Zach²

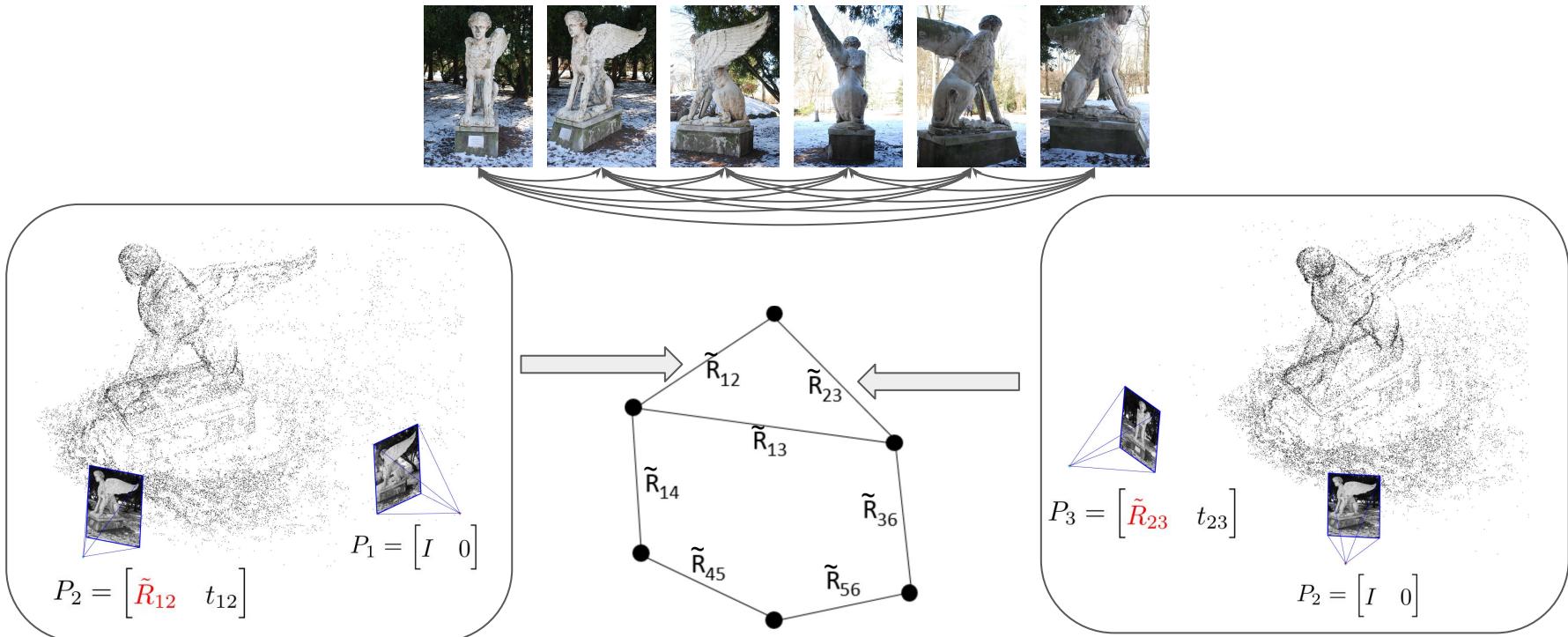
¹ Lund University

² Chalmers University of Technology

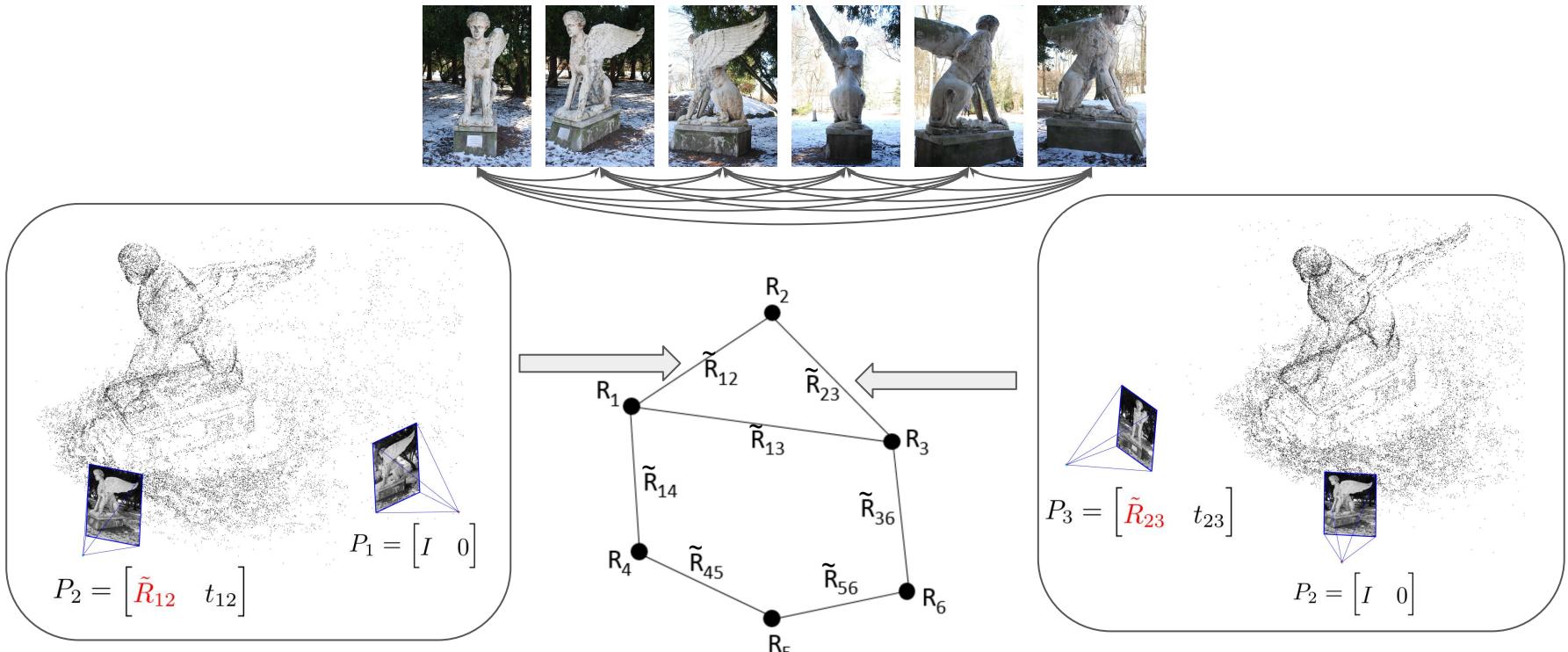
ICCV
OCT 19-23, 2025 HONOLULU
HAWAII







Given relative rotations (edges).
 Relative pose solutions (local coord. sys.)



Given relative rotations (edges).
 Relative pose solutions (local coord. sys.)

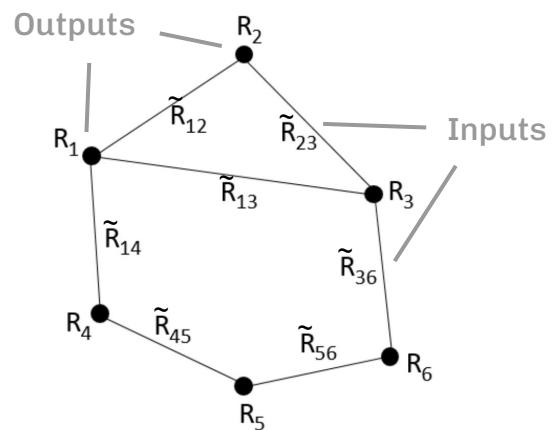
Compute camera orientations (nodes).
 Rotations in global coord. sys.

Problem formulation

Given $\{\tilde{R}_{ij}\}$, estimate $\{R_i\}$

$$\min_{\{R_i\}} \sum_{(i,j) \in E} d^2(\tilde{R}_{ij} R_j, R_i)$$

$$R_i \in SO(3) = \{R \in \mathbb{R}^{3 \times 3}; R^T R = I, \det(R) = 1\}$$



Isotropic RA: chordal distances

$$d^2(\tilde{R}_{ij}R_j, R_i) = \|\tilde{R}_{ij}R_j - R_i\|_F^2 = \underbrace{\|\tilde{R}_{ij}R_i\|_F^2}_{=3} + \underbrace{\|R_j\|_F^2}_{=3} - \underbrace{2 \operatorname{tr}(\tilde{R}_{ij}R_j R_i^\top)}_{=1+2\cos(\phi)}$$

Residual rotation angle. Invariant to residual rotation axis.

Isotropic RA: chordal distances

$$d^2(\tilde{R}_{ij}R_j, R_i) = \|\tilde{R}_{ij}R_j - R_i\|_F^2 = \underbrace{\|\tilde{R}_{ij}R_i\|_F^2}_{=3} + \underbrace{\|R_j\|_F^2}_{=3} - 2 \underbrace{\text{tr}(\tilde{R}_{ij}R_j R_i^\top)}_{=1+2\cos(\phi)}$$

Residual rotation angle. Invariant to residual rotation axis.

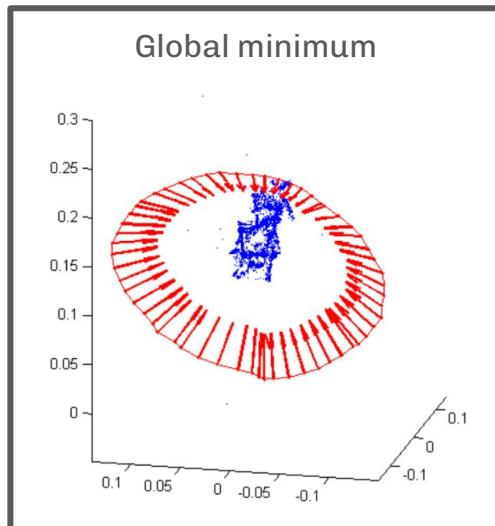
In matrix form:

$$\min_{\{R_i \in SO(3)\}} - \text{tr}(\tilde{\mathbf{R}} \mathbf{R} \mathbf{R}^\top)$$

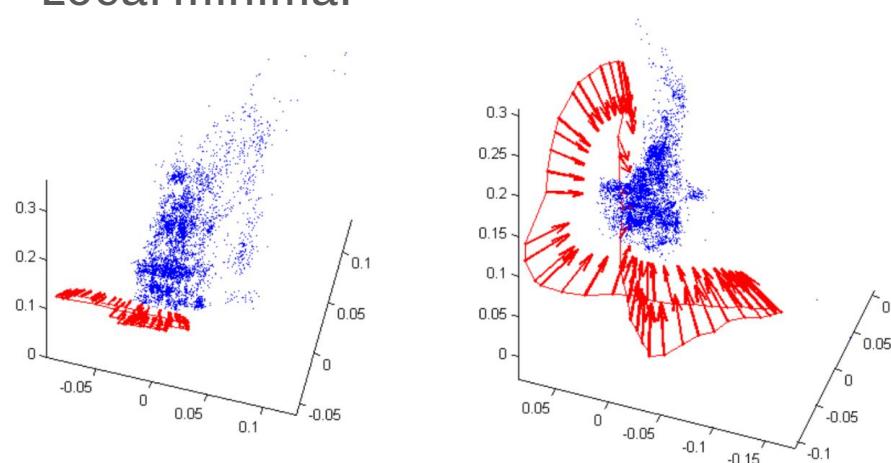
$$\mathbf{R} = \begin{pmatrix} R_1 \\ \vdots \\ R_n \end{pmatrix} \quad \tilde{\mathbf{R}} = \begin{pmatrix} 0 & \tilde{R}_{12}^\top & \tilde{R}_{13}^\top & \dots & \tilde{R}_{1n}^\top \\ \tilde{R}_{12} & 0 & \tilde{R}_{23}^\top & \dots & \tilde{R}_{2n}^\top \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \tilde{R}_{1n} & \tilde{R}_{2n} & \tilde{R}_{3n} & \dots & 0 \end{pmatrix}$$

Isotropic RA: non-convex problem

$$\min_{\{R_i \in SO(3)\}} - \text{tr}(\tilde{\mathbf{R}} \mathbf{R} \mathbf{R}^\top)$$



Local minima:



Isotropic RA: convex relaxation

Drop the determinant constraint:

$$\min_{\{R_i \in O(3)\}} - \text{tr}(\tilde{\mathbf{R}} \mathbf{R} \mathbf{R}^\top)$$

Take Lagrange-dual twice \rightarrow Linear SDP:

SDP- $O(3)$ -ISO:

$$\begin{aligned} & \min_{\mathbf{X} \succeq 0} - \text{tr}(\tilde{\mathbf{R}} \mathbf{X}) \\ & \text{s.t. } \mathbf{X}_{ii} = \mathbf{I}_3 \end{aligned}$$

If $\text{rank}(\mathbf{X}) = 3$, extract \mathbf{R} from $\mathbf{X} = \mathbf{R} \mathbf{R}^\top$.
Certifiably optimal solution

Isotropic RA: convex relaxation

Drop the determinant constraint:

$$\min_{\{R_i \in O(3)\}} - \text{tr}(\tilde{\mathbf{R}} \mathbf{R} \mathbf{R}^\top)$$

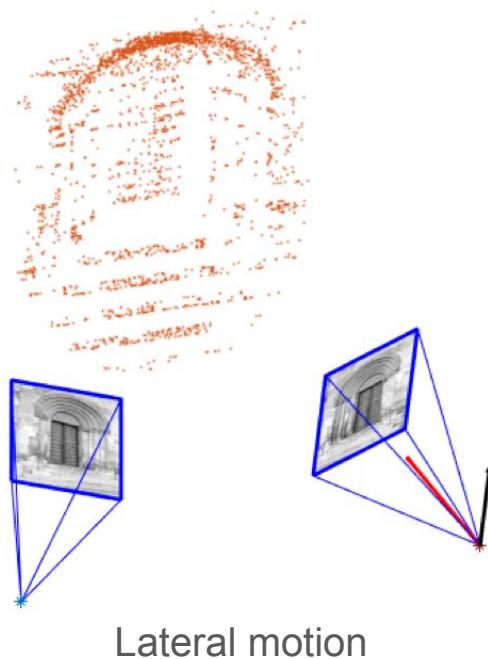
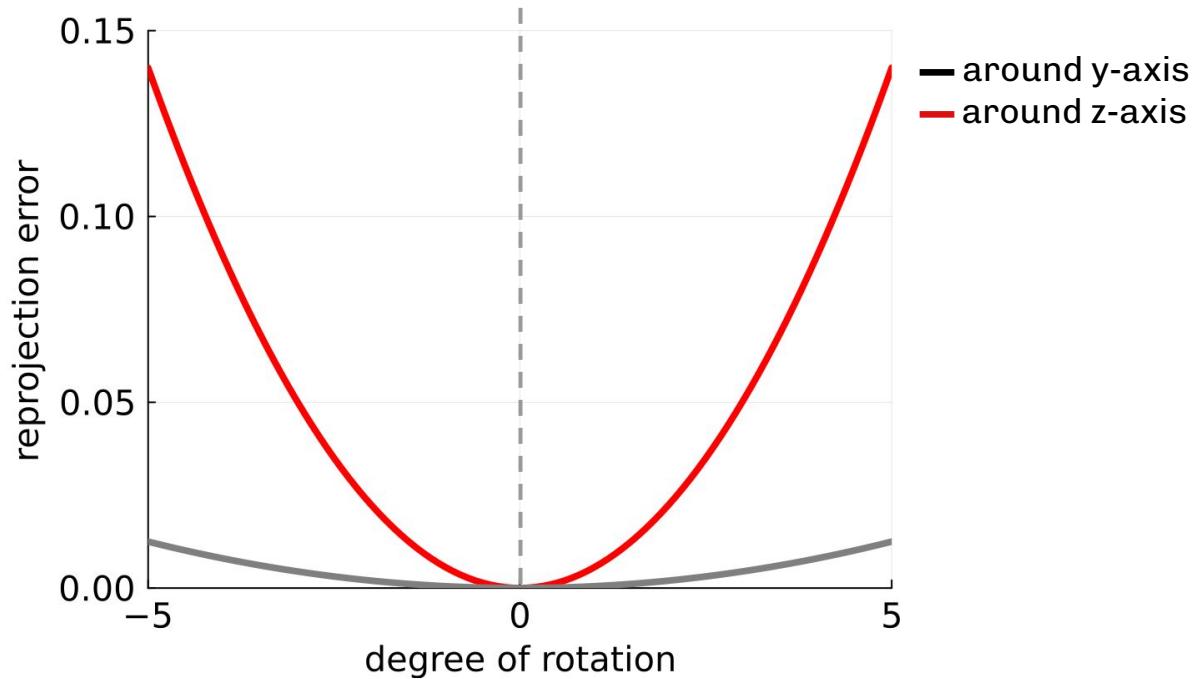
Take Lagrange-dual twice \rightarrow Linear SDP:

SDP- $O(3)$ -ISO:

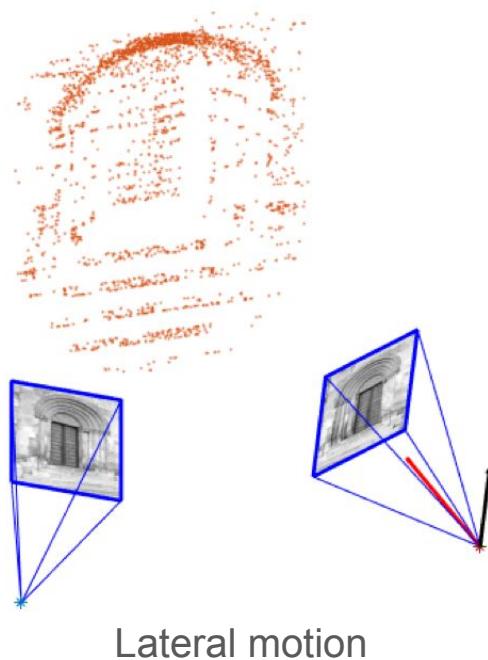
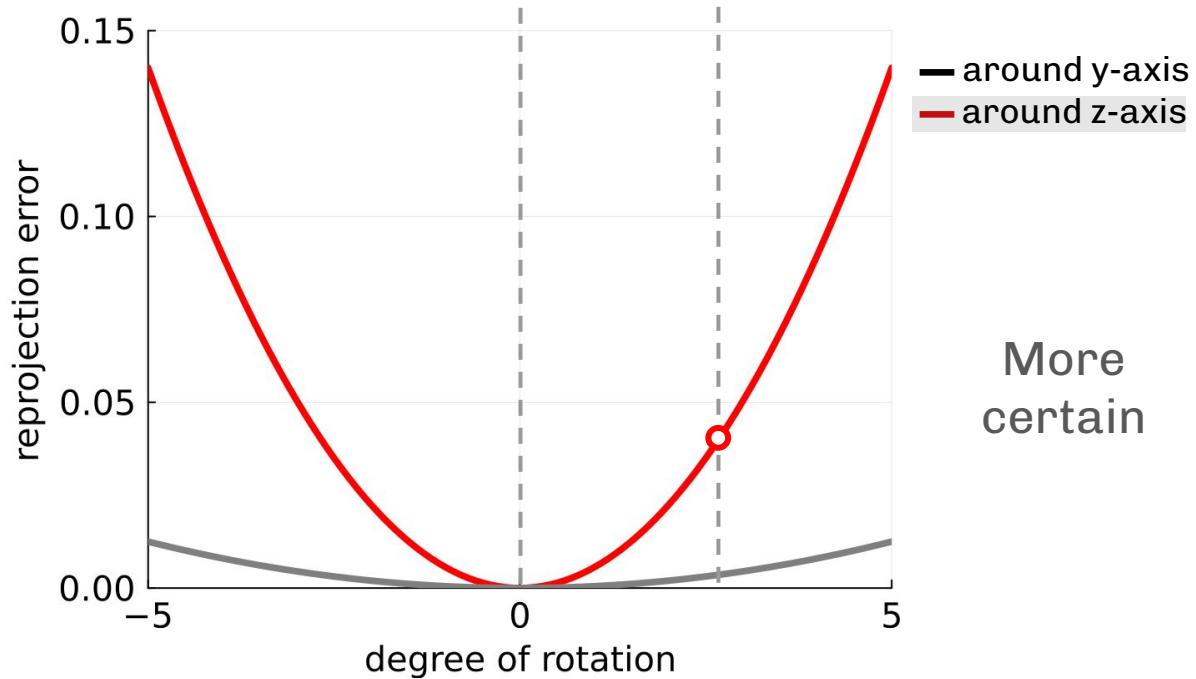
$$\begin{aligned} & \min_{\mathbf{X} \succeq 0} - \text{tr}(\tilde{\mathbf{R}} \mathbf{X}) \\ & \text{s.t. } \mathbf{X}_{ii} = \mathbf{I}_3 \end{aligned}$$

If $\text{rank}(\mathbf{X}) = 3$, extract \mathbf{R} from $\mathbf{X} = \mathbf{R} \mathbf{R}^\top$.
Certifiably optimal solution

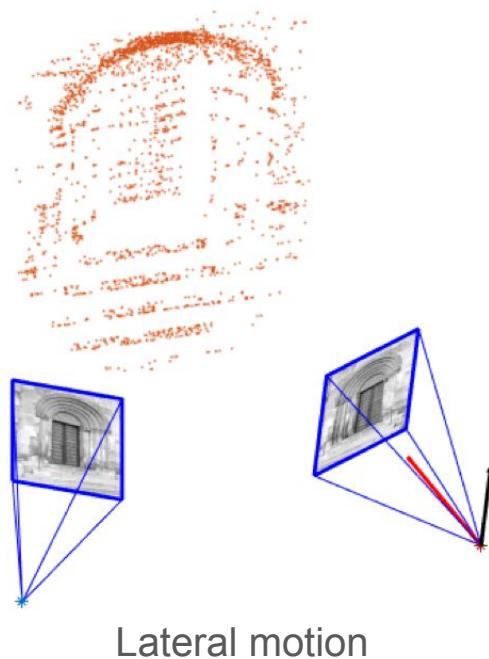
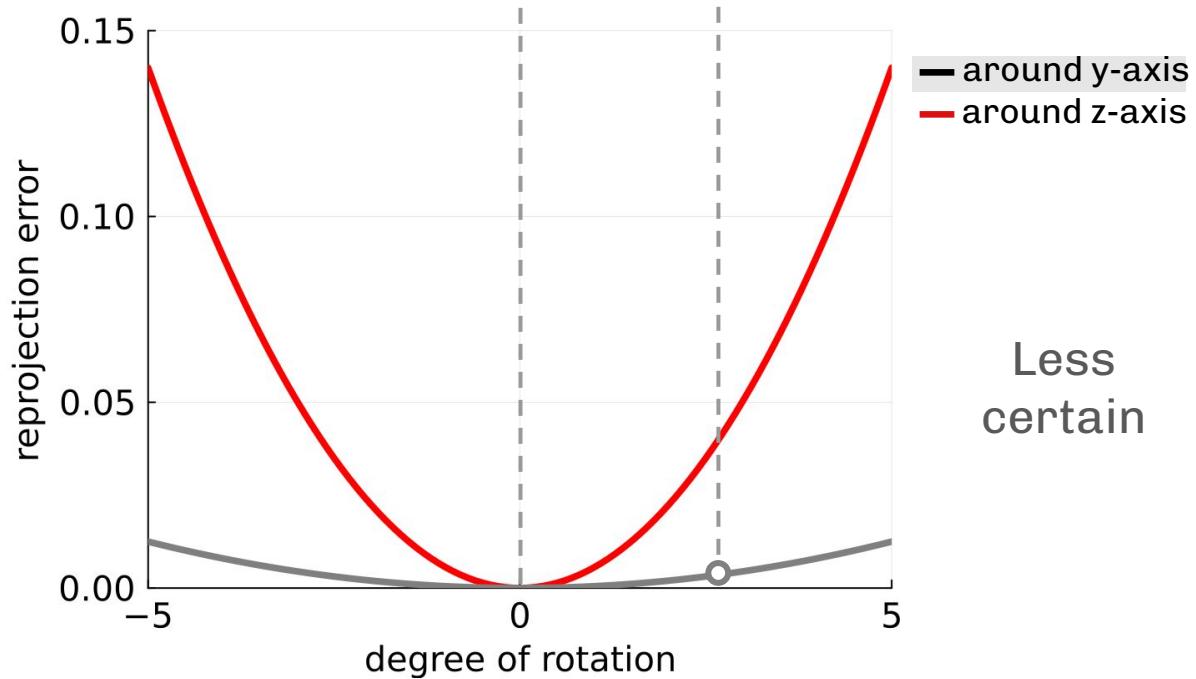
Uncertainty of two-view optimized rotations



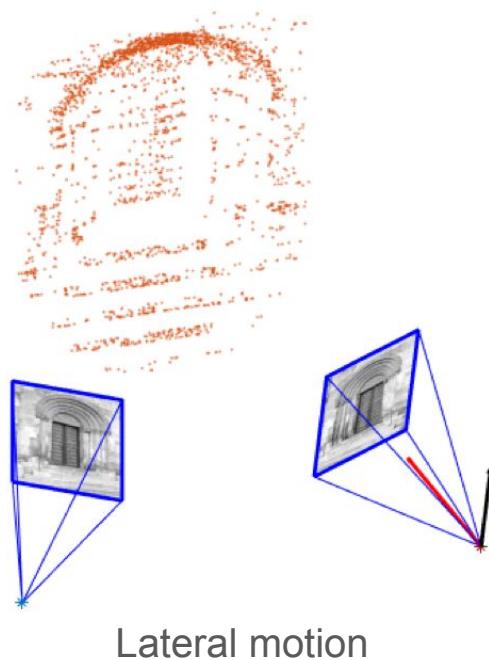
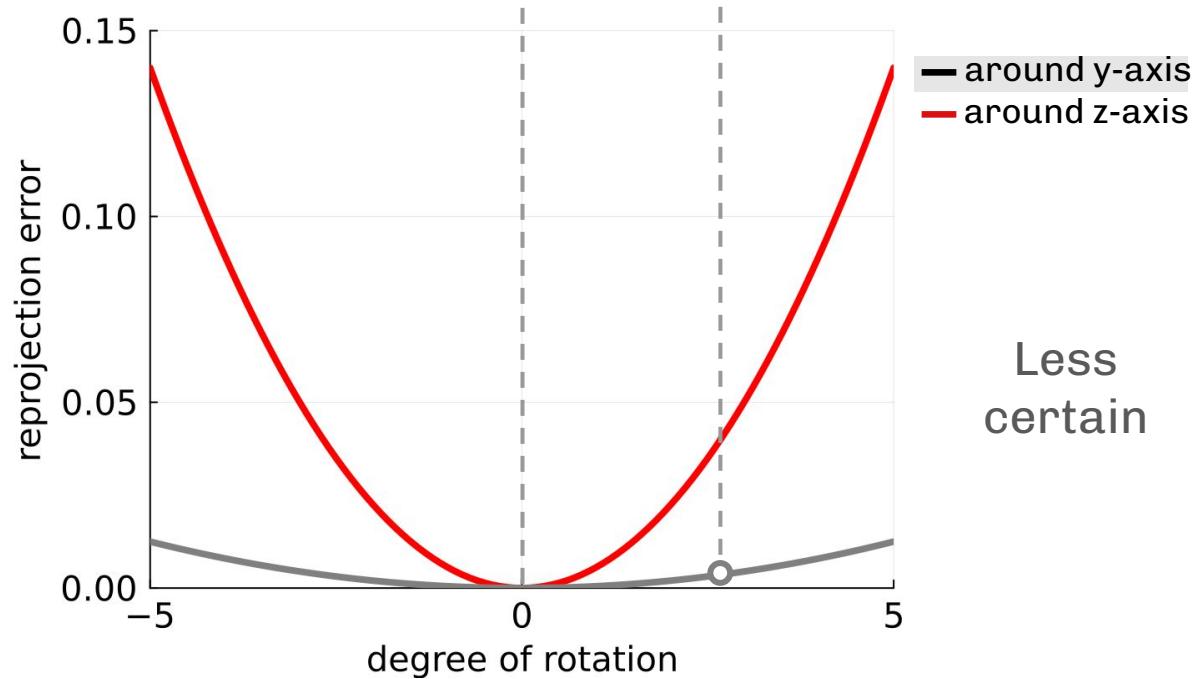
Uncertainty of two-view optimized rotations



Uncertainty of two-view optimized rotations

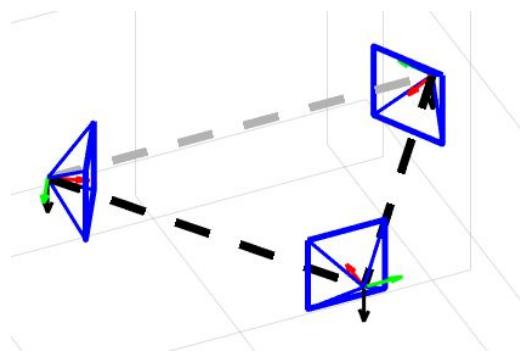


Uncertainty of two-view optimized rotations

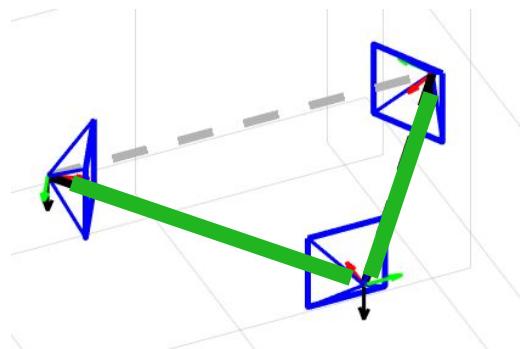


Propagate to averaging stage. Favour deviations in the directions of high uncertainty!

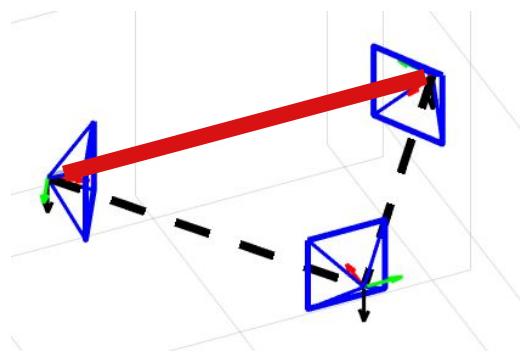
Toy example and sneak peek



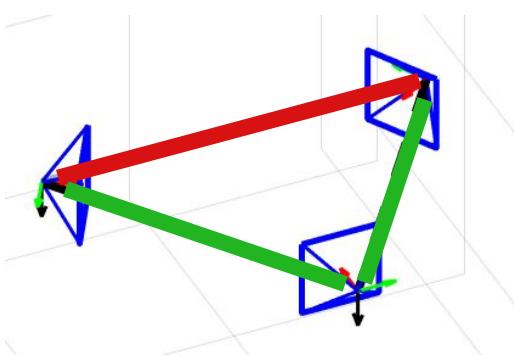
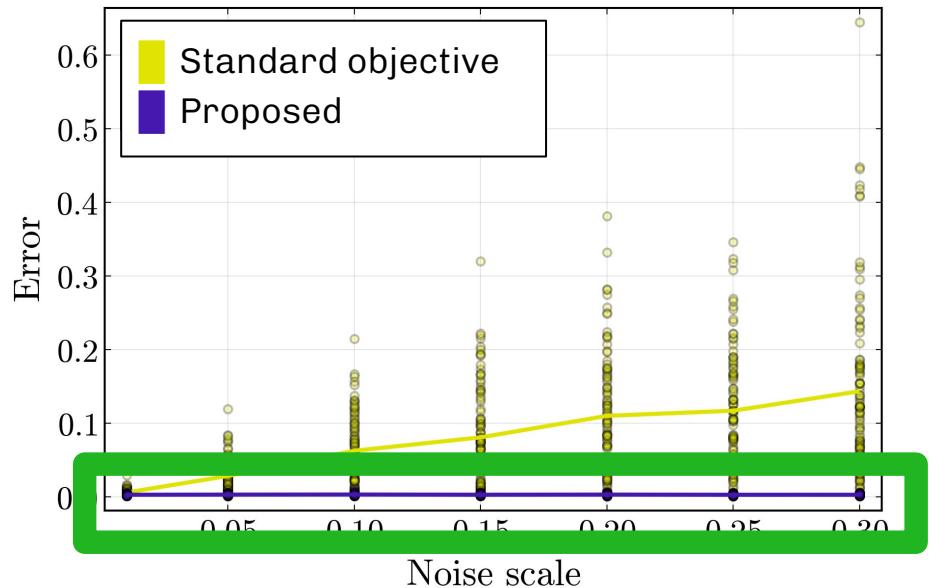
Toy example and sneak peek



Toy example and sneak peek



Toy example and sneak peek

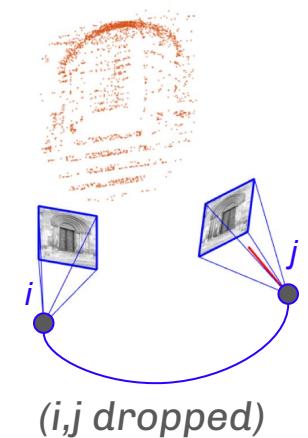


Result #1: uncertainty propagation for RA

Around local min. \tilde{R} , the objective is approximated as

$$\Delta\omega^\top H \Delta\omega$$

where $Q = e^{[\Delta\omega] \times \tilde{R}}$, $\Delta\omega$ — angle axis vector.

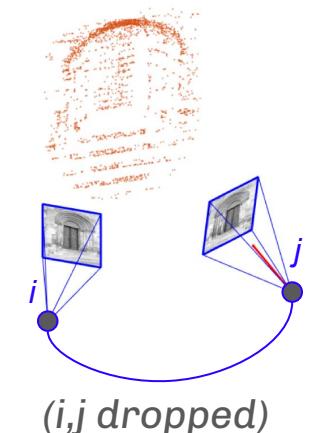


Result #1: uncertainty propagation for RA

Around local min. \tilde{R} , the objective *is* approximated as

$$\Delta\omega^\top H \Delta\omega \stackrel{?}{\approx} -\text{tr} \left(M \tilde{R} Q^\top \right) (+\text{const.})$$

where $Q = e^{[\Delta\omega] \times \tilde{R}}$, $\Delta\omega$ — angle axis vector.



Result #1: uncertainty propagation for RA

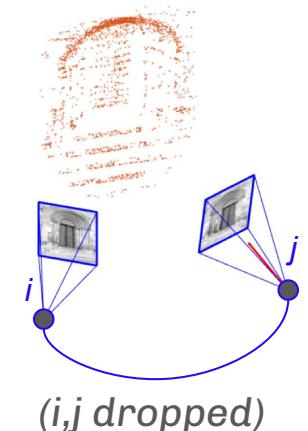
Around local min. \tilde{R} , the objective is approximated as

$$\Delta\omega^\top H \Delta\omega \stackrel{?}{\approx} -\text{tr} \left(M \tilde{R} Q^\top \right) (+\text{const.})$$

where $Q = e^{[\Delta\omega] \times \tilde{R}}$, $\Delta\omega$ — angle axis vector.

Equality (to 1st order) if

$$M = \frac{\text{tr}(H)}{2} \mathbf{I}_3 - H$$



See paper for details.

Result #1: uncertainty propagation for RA

Around local min. \tilde{R} , the objective is approximated as

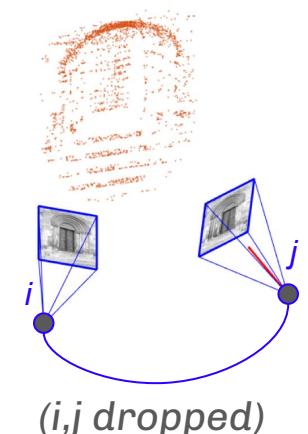
$$\Delta\omega^\top H \Delta\omega \stackrel{?}{\approx} -\text{tr} \left(M \tilde{R} Q^\top \right) (+\text{const.})$$

where $Q = e^{[\Delta\omega] \times \tilde{R}}$, $\Delta\omega$ — angle axis vector.

Equality (to 1st order) if

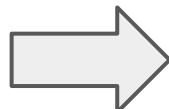
$$M = \frac{\text{tr}(H)}{2} \mathbf{I}_3 - H \quad \leftarrow \begin{array}{l} \text{while } H \text{ is always p.s.d.,} \\ M \text{ is almost always indefinite} \end{array}$$

See paper for details.



New objective

$$\min_{\{R_i \in SO(3)\}} - \text{tr}(\tilde{\mathbf{R}} \mathbf{R} \mathbf{R}^\top)$$



$$\min_{\{R_i \in SO(3)\}} - \text{tr}(\mathbf{N} \mathbf{R} \mathbf{R}^\top)$$

$$\tilde{\mathbf{R}} = \begin{pmatrix} 0 & \tilde{R}_{12}^\top & \tilde{R}_{13}^\top & \dots & \tilde{R}_{1n}^\top \\ \tilde{R}_{12} & 0 & \tilde{R}_{23}^\top & \dots & \tilde{R}_{2n}^\top \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \tilde{R}_{1n} & \tilde{R}_{2n} & \tilde{R}_{3n} & \dots & 0 \end{pmatrix}$$

$$\mathbf{N} = \begin{pmatrix} 0 & M_{12}\tilde{R}_{12}^\top & M_{12}\tilde{R}_{12}^\top & \dots & M_{1n}\tilde{R}_{1n}^\top \\ \tilde{R}_{12}M_{12} & 0 & M_{23}\tilde{R}_{23}^\top & \dots & M_{2n}\tilde{R}_{2n}^\top \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \tilde{R}_{1n}M_{1n} & \tilde{R}_{2n}M_{2n} & \tilde{R}_{3n}M_{3n} & \dots & 0 \end{pmatrix}$$

SDP-O(3)-ISO:

$$\min_{\mathbf{X} \succeq 0} - \text{tr}(\tilde{\mathbf{R}} \mathbf{X})$$

$$\text{s.t. } \mathbf{X}_{ii} = \mathbf{I}_3$$

SDP-O(3)-ANISO:

$$\min_{\mathbf{X} \succeq 0} - \text{tr}(\mathbf{N} \mathbf{X})$$

$$\text{s.t. } \mathbf{X}_{ii} = \mathbf{I}_3$$

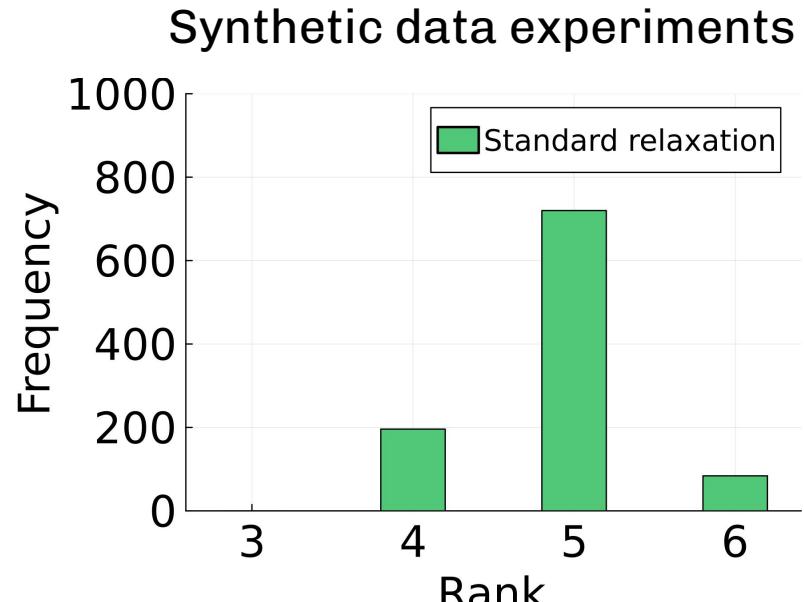
Using standard relaxation

SDP-O(3)-ANISO:

$$\min_{\mathbf{X} \succeq 0} - \text{tr}(\mathbf{N}\mathbf{X})$$

$$\text{s.t. } \mathbf{X}_{ii} = \mathbf{I}_3$$

Doesn't work with anisotropic cost



$$f(Q) = - \text{tr}(M \tilde{R} Q^T), \text{ } M \text{ indefinite}$$

- Good approximation on $\text{SO}(3)$ and $\text{conv}(\text{SO}(3))$
- Yields strictly smaller values on $\text{O}(3)$ than on $\text{SO}(3)$

See detailed analysis
in the paper.

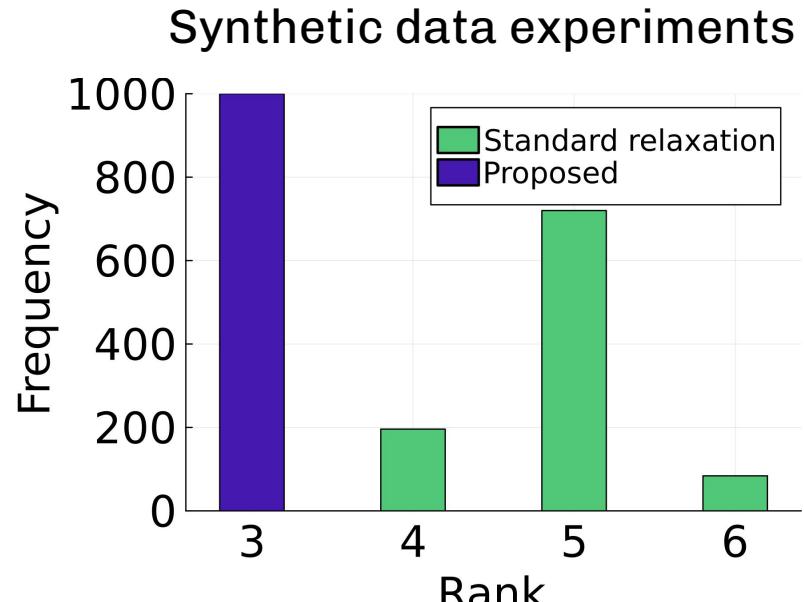
Using standard relaxation

SDP-O(3)-ANISO:

$$\min_{\mathbf{X} \succeq 0} -\text{tr}(\mathbf{N}\mathbf{X})$$

$$\text{s.t. } \mathbf{X}_{ii} = \mathbf{I}_3$$

Doesn't work with anisotropic cost



$$f(Q) = -\text{tr}(M\tilde{R}Q^T), \text{ } M \text{ indefinite}$$

- Good approximation on $\text{SO}(3)$ and $\text{conv}(\text{SO}(3))$
- Yields strictly smaller values on $\text{O}(3)$ than on $\text{SO}(3)$

See detailed analysis
in the paper.

Result #2: new convex relaxation

Keep all $SO(3)$ constraints:

$$\min_{\{R_i\}} - \text{tr}(\mathbf{N} \mathbf{R} \mathbf{R}^\top)$$

$$\text{s.t. } R_i R_i^\top = \mathbf{I}_3$$

$$R_i R_j^\top \in SO(3)$$

Take Lagrange-dual twice \rightarrow Linear SDP:

$$\text{SDP-cSO(3): } \min_{\mathbf{X} \succeq 0} - \text{tr}(\mathbf{N} \mathbf{X})$$

$$\text{s.t. } \mathbf{X}_{ii} = \mathbf{I}_3$$

$$\mathbf{X}_{ij} \in \text{convhull}(SO(3))$$

Result #2: new convex relaxation

Keep all $SO(3)$ constraints:

$$\min_{\{R_i\}} - \text{tr}(\mathbf{N} \mathbf{R} \mathbf{R}^\top)$$

$$\text{s.t. } R_i R_i^\top = \mathbf{I}_3$$

$$R_i R_j^\top \in SO(3)$$

Take Lagrange-dual twice \rightarrow Linear SDP:

SDP-cSO(3):

$$\min_{\mathbf{X} \succeq 0} - \text{tr}(\mathbf{N} \mathbf{X})$$

$$\text{s.t. } \mathbf{X}_{ii} = \mathbf{I}_3$$

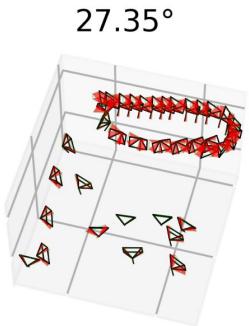
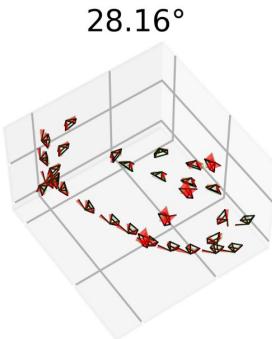
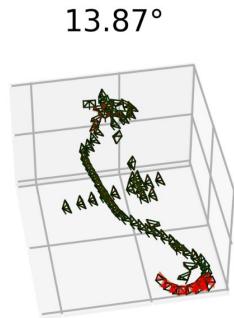
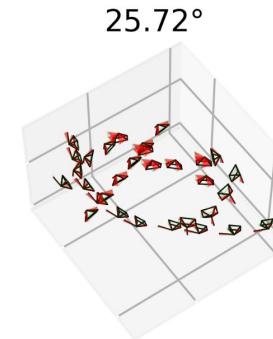
$$\mathbf{X}_{ij} \in \text{convhull}(SO(3))$$

SDP-constraint
[Saundersson et al. 2014]

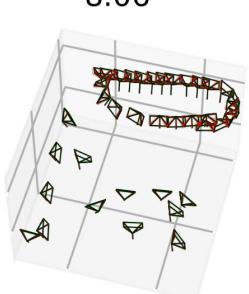
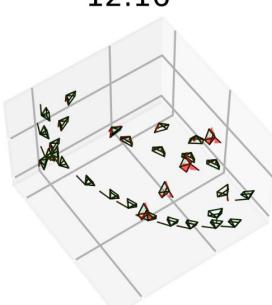
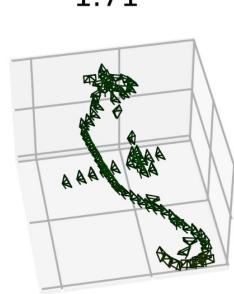
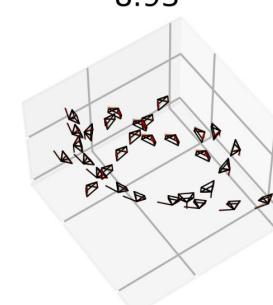
Better reconstructions

RMS angular errors

Standard
isotropic
SDP- $O(3)$



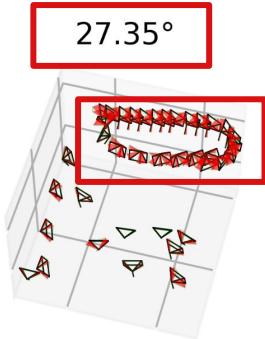
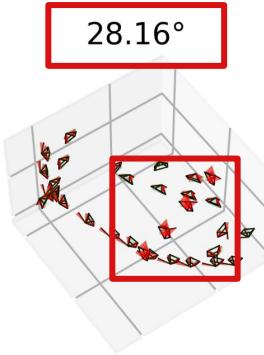
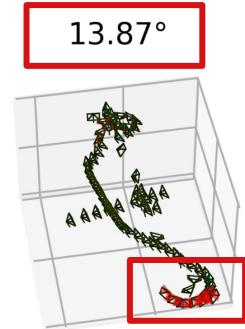
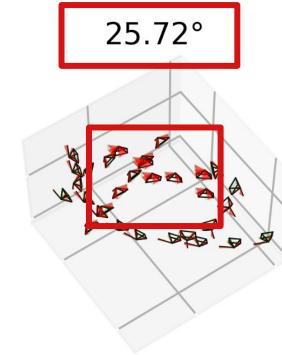
Proposed
SDP-cSO(3)



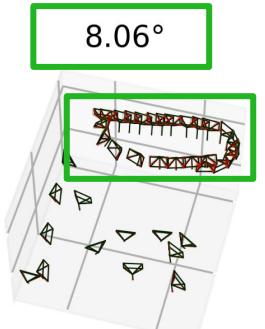
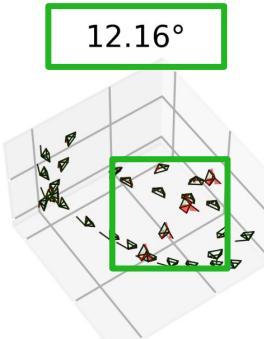
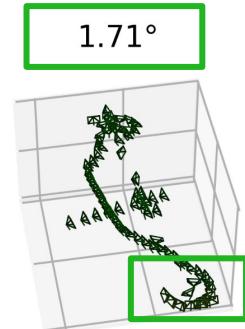
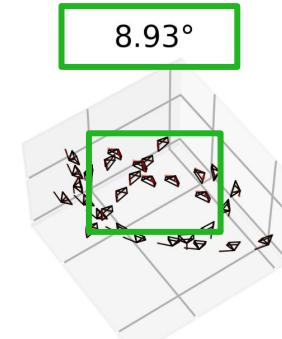
Better reconstructions

RMS angular errors

Standard
isotropic
SDP- $O(3)$



Proposed
SDP-cSO(3)



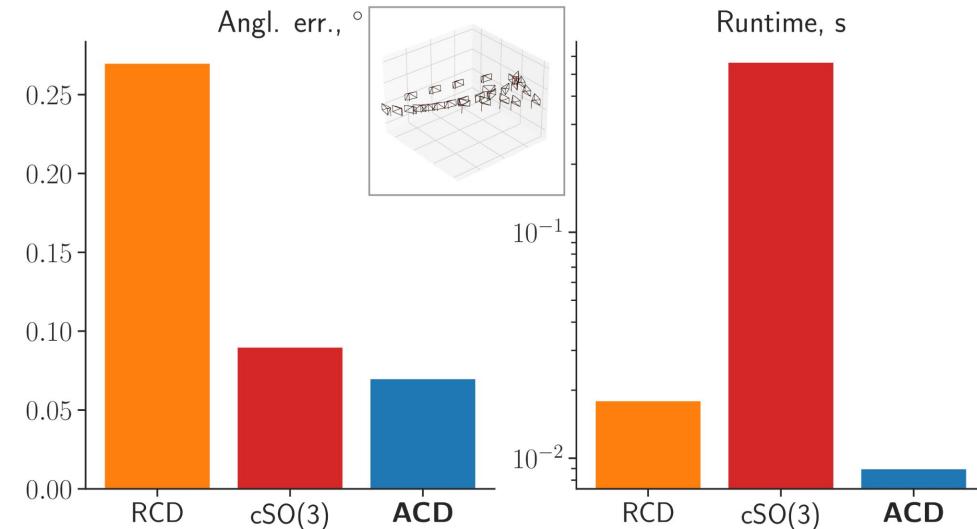
Better reconstructions

Dataset	Method	rank(X^*)	$\sqrt{\sum_i \ R_i - R_i^*\ _F^2}$	Runtime, s
LU Sphinx 70 cameras 85% indef.	SDP-O(3)-ISO	3	0.0944	2
	SDP-O(3)-ANISO	7	18.6037	460
	SDP-cSO(3)	3	0.0740	5
Round Church 92 cameras 98% indef.	SDP-O(3)-ISO	3	0.1399	6
	SDP-O(3)-ANISO	6	26.3808	632
	SDP-cSO(3)	3	0.1267	55
UWO 114 cameras 77% indef.	SDP-O(3)-ISO	3	0.3142	14
	SDP-O(3)-ANISO	6	22.6873	1929
	SDP-cSO(3)	3	0.2274	7
Tsar Nikolai I 89 cameras 87% indef.	SDP-O(3)-ISO	3	0.1170	7
	SDP-O(3)-ANISO	6	26.8944	1245
	SDP-cSO(3)	3	0.0534	5
Vercingetorix 69 cameras 77% indef.	SDP-O(3)-ISO	3	0.3146	2
	SDP-O(3)-ANISO	6	14.8244	242
	SDP-cSO(3)	3	0.2910	4

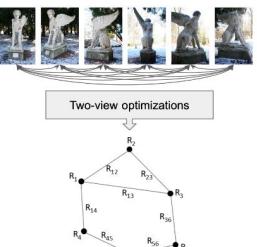
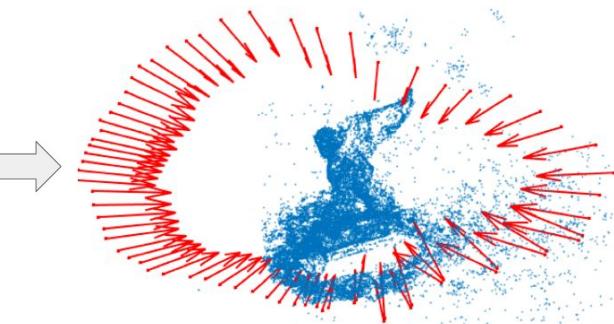
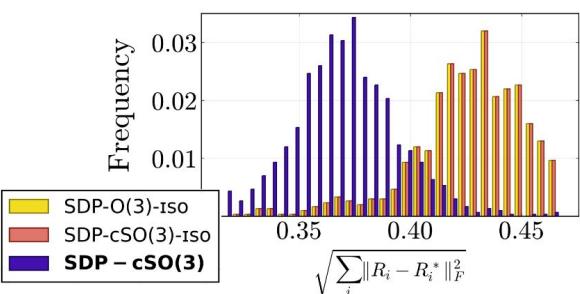
See paper for more results.

Fast solver?

- We used generic SDP solver
- Fast dedicated solver (ACD):
arxiv.org/abs/2506.01940



Thank you



Dataset	Method	Mahal. err.	Angl. err.
LU Sphinx	SDP-O(3)-ISO	0.388	0.46
	Spectral	0.420	1.17
	SDP-cSO(3)	0.207	0.36
Round Church	SDP-O(3)-ISO	0.631	0.59
	Spectral	0.437	1.20
	SDP-cSO(3)	0.368	0.54
UWO	SDP-O(3)-ISO	1.481	1.19
	Spectral	6.125	7.07
	SDP-cSO(3)	0.727	0.86
Tsar Nikolai I	SDP-O(3)-ISO	0.687	0.48
	Spectral	0.344	0.71
	SDP-cSO(3)	0.188	0.22
Vercingetorix	SDP-O(3)-ISO	0.431	1.53
	Spectral	30.970	86.94
	SDP-cSO(3)	0.423	1.42
Eglise Du Dome	SDP-O(3)-ISO	0.224	0.24
	Spectral	0.119	0.22
	SDP-cSO(3)	0.188	0.21
King's College	SDP-O(3)-ISO	0.229	0.76
	Spectral	0.251	1.00
	SDP-cSO(3)	0.130	0.37
Kronan	SDP-O(3)-ISO	0.738	0.76
	Spectral	2.622	4.36
	SDP-cSO(3)	1.111	1.38
Alcatraz	SDP-O(3)-ISO	1.333	0.62
	Spectral	0.667	0.80
	SDP-cSO(3)	1.011	0.45
Museum Barcelona	SDP-O(3)-ISO	2.710	0.79
	Spectral	16.588	7.35
	SDP-cSO(3)	1.216	0.46
Temple Singapore	SDP-O(3)-ISO	2.420	0.86
	Spectral	0.719	0.46
	SDP-cSO(3)	1.076	0.55