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Background

® Vehicle Re-ID: Match same vehicle across different views

® Challenge: Large intra-class variation due to viewpoint changes

® Problem: Lack of large-scale multi-view vehicle datasets

Target

® Solution: Build Diff VERI dataset and propose VehicleMAE for pre-training



{' DIffVERI Dataset

(a) Three steps for building DiffVERI dataset

Text-to-Image

Diffusion Model
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(b) Multi-view generated data and semantic annotations

Pipelines

® Synthetic data generation using
DreamBooth (diffusion model).

® 1.7M+ images with multi-view semantic
annotations.

® Data filtering via YOLOv7 and manual
annotation.

® Multi-view segmentation using fine-tuned
SAM model.



@ DIffVERI Benchmark

Multi-view
Datasets Images Source Semantic Resolution Views
Annotations
VeRi-776[25] 49,357 Real X 243 x 214  Constrained
VehicleID[26] 221,763 Real X 374 x 412  Constrained
VeRi-Wild[27] 416,314 Real X 415 x 354  Constrained
VehicleX[48] 192,150 Synthetic X 256 x 256 Constrained
VRAI[42] 137,613 Real X 349 x 234  Constrained
DiffVERI 1,712,703  Real-synthetic v 496 x 485 Diverse

Comparison

® Comparison of the statistics between
DiffVERI and other public vehicle
Re-ID datasets. In contrast, Diff VERI
1s currently the largest multi-view
vehicle Re-ID benchmark

Dataset Example

® Some synthesized instances and multi-
view annotations. The two adjacent
rows represent the synthesis images of
multiple view ranges for two vehicle
identities and the corresponding view
masks.
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View-asymmetry Masked Image Modeling

-

EEEEE =22
EENEER L@EE
EEOC@EN | (]
E1=1=] L}
[ L] 1.

Patch Non-overlapping
Sequences Split
PI=1=]a DIEEU

DEEEED mmmm
OEEECD D
OEERL EDE@@
I i [ s

(a) Asymmetric Mask Sampling Strategy

/

VMIM consist of two submodules:

(a) The asymmetric mask sampling strategy in VMIM module generates a pair of visible maps
without overlapping patches to create diverse preservation clues for reconstruction tasks.
(b) Ilustration of the identity-related region reconstruction in terms of ¢1.
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VeRi-776 VehiclelD

BicHd #AP Raikd Rakl Ranks

Supervised Learning
AAVER+E[19] 612 890 635 856
VehicleNet«®[54] 834 968  79.5 92,0
TransReID+"[14] 820  97.1 . -
GIL:" (5 802 B WA - ® Datasets: VeRi-776, VehiclelD
LCNL+V[46] 818 974 3 :
TANet+R[17] 836 968 782 926

CFA-Net+[41] 80.7 96.9 - - o
HCI-Net+R[36] 838 966 764 912 ® Metrics: mAP, Rank-l, Rank-5
CLIP-ReIDxC[24] 83.3 97.4 78.1 92.7
Ours{® 876 974 85.9 949
Unsupervised Learning o J o .
MMT:R[7] 254 609 3L0 424 ® Quantitative comparison:
SPCL%[8 369 799 53.0 66.4 .
e C:R[[ﬂ]] o wa _ Our method delivers the best mAP and Rank
PPLR+R[4] 416 856 . g accuracy for both supervised and unsupervised
VAFSLTQE:?;’] ;g;‘ ;g? ' ' settings. The noticeable performance improvement
3 5 ; - - . . . .
AdaMG+R[31] 410 862 ] ] implies that the masked image modeling based on
NNNLE[0] - 423 863 - : VehicleMAE i1s better suited for downstream tasks

STDAxR[13] 423 874 s .
MAE{°[12] 376 812 69.0 81.8
CL-MAE{°[29] 410  84.0 70.8 82.6
CMAE{°[18] 416 847 a1 84.9
Ourst® 425 876 73.3 85.6

of vehicle Re-1D.
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Qualitative Comparison

Example A E

® Feature Distributions: The first figure
displays two visualization examples of

frample B RS ol the feature distribution at the patch-
m Background = Front View = Rear View = Top View - Side View level extracted by Baseline and
. 1_ VehicleMAE.
“ =C ﬂ —om ® Distance Distribution: Next figure
N % further explores the distance metirc
s performance of different pre-training
‘j , models on positive and negative
I \ /1 sample pairs.
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(a) Positive Sample Pairs (b) Negative Sample Pairs



This paper releases Diff VERI, a large-scale multi-view vehicle Re-
ID dataset for learning view-invariant representations, and proposes a
masked 1image modeling pre-training paradigm termed VehicleMAE
specially for vehicle Re-ID downstream tasks. VehicleMAE first
proposes a VMIM module that attempts to apply two homogeneous
MAESs to predict the RGB pixels and multi-view semantic clues of
vehicles 1n pairs, thereby gaining diverse multi-view inference
capabilities. Subsequently, to facilitate learning collaboratively, a
PPMD module 1s designed to progressively exchange knowledge with
cach other. Extensive experiments demonstrate that equipping our pre-
training model can achieve competitive performance in generic vehicle
RelD downstream tasks. Future work contributes to further expanding
VehicleMAE into a unified multimodal pre-training paradigm.



