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Background
Reconstructing clean, distractor-free 3D 
scenes from real-world, cluttered, and 
dynamic captures remains challenging, 
especially in casual captures such as 
egocentric videos. To address this issue, we 
propose DeGauss, a decoupled 
foreground-background design which 
leverages dynamic-static Gaussian splatting 
for robust and generalizable dynamic- static 
decomposition.

(c) Self-Supervised Decomposition and Modeling

With Self-supervised Dynamic-static 
decomposition based on the 

complementary expressiveness of 
foreground/background gaussian 

splatting (c), DeGauss models SOTA 
distractor-free static scene from 
noisy input (a) and yields high-

quality & Efficient dynamic scene 
representation (b).
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Conclusion
• Our proposed method DeGauss achieves 
SOTA distractor-free reconstruction results for 
both highly challenging egocentric videos and 
image collections.
• DeGauss also enables high-quality and 
efficient dynamic scene modeling through the 
decoupled dynamic-static representation.
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Figure 5. Occlusion handling on the NeRF-on-the-Go dataset [26]. Compared to SpotlessSplats [28], our method better preserves fine
details in the training views (please consider zooming in for a clearer view) and reduces misclassification of dynamic regions, leading to
consistently better LPIPS on testing images. Right of dashed line: more results.

Table 2. Comparison dynamic modeling on Neu3D Dataset [16]. The best , second best , and third best are highlighted. Noticeably, our
method shows a consistently better LPIPS score compared to baseline methods.

Cut Beef Cook Spinach Sear Steak Flame Steak Flame Salmon Coffee Martini Mean

PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑

NeRFPlayer[32] 31.83 0.928 0.119 32.06 0.930 0.116 32.31 0.940 0.111 27.36 0.867 0.215 26.14 0.849 0.233 32.05 0.938 0.111 30.29 0.909 0.151
HyperReel [1] 32.25 0.936 0.086 31.77 0.932 0.090 31.88 0.942 0.080 31.48 0.939 0.083 28.26 0.941 0.136 28.65 0.897 0.129 30.72 0.931 0.101
HexPlane [3] 30.83 0.927 0.115 31.05 0.928 0.114 30.00 0.939 0.105 30.42 0.939 0.104 29.23 0.905 0.088 28.45 0.891 0.149 30.00 0.922 0.113
KPlanes [7] 31.82 0.966 0.114 32.60 0.966 0.114 32.52 0.974 0.104 32.39 0.970 0.102 30.44 0.953 0.132 29.99 0.953 0.134 31.63 0.964 0.117
MixVoxels [40] 31.30 0.965 0.111 31.65 0.965 0.113 31.43 0.971 0.103 31.21 0.970 0.108 29.92 0.945 0.163 29.36 0.946 0.147 30.81 0.960 0.124
SWinGS [31] 31.84 0.945 0.099 31.96 0.946 0.094 32.21 0.950 0.092 32.18 0.953 0.087 29.25 0.925 0.100 29.25 0.925 0.100 31.12 0.941 0.095
4DGS [43] 32.66 0.946 0.053 32.46 0.949 0.052 32.49 0.957 0.041 32.75 0.954 0.040 29.00 0.912 0.081 27.34 0.905 0.083 31.12 0.937 0.058
Ours 32.56 0.957 0.042 32.61 0.950 0.041 33.20 0.956 0.035 32.75 0.955 0.034 29.23 0.916 0.068 28.80 0.916 0.062 31.52 0.942 0.047
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Figure 6. Our method robustly handles various challenges, preserv-
ing clean and high quality static background.

dataset Nerf-on-the-go[26] with clean reference test views,
we report detailed per-scene metrics including peak signal-
to-noise ratio (PSNR), perceptual quality (LPIPS) [50], and
structural similarity index (SSIM) [42] against baseline
methods[13, 15, 26–28, 41] on the hold-out test set in Tab. 1.
Our methods generalize to image collections and achieve

state-of-the-art results. Notably, our method consistently
achieves significantly better LPIPS scores over the previous
SOTA method SpotlessSplats [28]. We show our method
robustly handles occlusion and reconstructs fine static de-
tails compared to SpotlessSplats [28]in Fig. 5. Additionally,
our methods could naturally handle various input challenges,
such as camera motion blur and lens flare, as shown in Fig. 6.

Moreover, we compare our method’s composed render
quality with various baseline methods [1, 3, 7, 31, 32, 40, 43]
in Tab. 2, where our methods achieve consistently better
LPIPS scores. We qualitatively show the dynamic recon-
struction comparison and the rendering FPS of [43] and our
method in Fig. 7(on RTX4090), where our methods show
better reconstructed fine details and better test-time render-
ing efficiency. Moreover, we compare our method with
4DGS [45] on HyperNeRF [25] dataset in Fig. 8, showing
that our method effectively regularizes gaussian movements
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Figure 7. Qualitative comparison with 4DGS [43] on the
Neu3D [16] dataset. FPS is tested with fix-view rendering as [43].

GT 4DGS Ours GT 4DGS Ours

br
oo

m

chicken

3d
-p

ri
nt

er

peelbanana

Figure 8. Qualitative comparison of our method with 4DGS [43]
on HyperNerf Vrig dataset [25]. Please consider zooming in for a
clearer view.

with probabilistic controlled dynamic foreground representa-
tion and reduces unregularized moving artifacts.

5. Ablation study
Brightness Control(BC) is introduced to enhance the back-
ground branch’s capacity to model non-Lambertian effects
and mitigate dynamic-static ambiguities caused by varying
illuminations, as shown in Fig. 9. w/o BC leads to down-
graded performance in Tab. 3.
Partial Opacity Reset(POR) controls the gaussian density,
facilitates floaters pruning, and mitigates local minima as-
signment. We show in Fig. 9 and Tab. 3 that this design leads
to cleaner separation.
Background Mask Element(m→

b) is introduced to promote

w/o BC w/o POR w/o m→
b Ours
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Figure 9. Ablation Study on AEA [19] dataset.

w/o Ldepth Ours

Figure 10. Ablation Study on Neu3D dataet [16] cut beef scene.

Table 3. Ablation study on Nerf-on-the-go dataset[26]

Sequence from PSNR→ SSIM→ LPIPS↑

w.o BC 23.54 0.814 0.118
w.o POR 23.56 0.814 0.117
w.o Ldepth 23.68 0.816 0.113
w.o. m→

b 23.83 0.817 0.115
Ours 23.91 0.819 0.113

cleaner separation and discourage mid-range probabilities.
Though the improvements are not significant for image col-
lections with good initializations, it leads to better dynamic-
static modeling and separation results as shown in Fig. 9.
Loss Ldepth is introduced to promote reconstruction with
smooth background geometry and loosely regularize fore-
ground and background depth prediction. As shown
in Fig. 10, this component efficiently prevents unconstrained
gaussians from occluding test-time render for sparse, fixed
camera input. Ldepth also leads to better rendering quality as
shown in Tab. 3.

6. Conclusion
This paper proposes DeGauss to robust decompose dynamic-
static elements in the scene with gaussian splatting. With
decoupled dynamic-static gaussian branches controlled by
mask attributes rasterized by foreground gaussians, our
method achieves flexible yet accurate dynamic-static de-
composition that widely generalizes to various scenarios,
leading to clean distractor-free static scene modeling and
high-quality and efficient dynamic scene modeling.
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Table 1. Quality and efficiency evaluation on all scenes of
Neu3D [14] dataset tested on a RTX4090.†: trained densify grad
threshold →2 to reduce number of gaussians.

Method PSNR(→) SSIM(→) LPIPS(↑) Training Time(↑) FPS(→) Dyna. Gaussian num(↑)

NeRFPlayer [26] 30.29 0.909 0.151 6 hours 0.045 -
HyperReel [1] 30.72 0.931 0.101 9 hours 2.0 -
HexPlane [3] 30.00 0.922 0.113 12 hours 0.2 -
KPlanes [6] 31.63 0.964 0.117 5.0 hours 0.3 -

SWinGS [25] 31.12 0.941 0.095 - 71 -
4DGS [31] 31.12 0.937 0.058 0.85 hours 53 124,197
4DGS† [31] 28.72 0.919 0.078 0.67 hours 68 62298

Ours 31.52 0.942 0.047 2.1 hours 71 56,533
Ours† 31.56 0.942 0.047 2 hours 157 22,479

This actually enables our gaussian-based decoupled design,
to fast and robustly separate dynamic/static modeling for a
wide range of inputs, and our explicit static modeling leads
to much better generalizability of novel view synthesis for
dynamic scene modeling( Fig. 4).

Figure 4. Comparison with baseline methods on novel view synthe-
sis with causal strict monocular input of dycheck-iphone dataset [7].

G. Additional Experiment on Bonn RGBD
dataset [17]

To further demonstrate generalizability our method, we
evaluate on the Crowd scene of a SLAM dataset-Bonn
RGBD [17], preprocessed with SFM and MVS pipeline
of [23, 24]. We qualitatively show the distractor-free static
scene reconstruction and dynamic-static decoupling results
in Fig. 5.

Figure 5. Evaluation on 928 frames long highly dynamic Crowd

scene of Bonn RGBD dataset [17](with only RGB as input).

Table 2. Quantitative results on RobustNerf [21] dataset. Our
method shows best overall performance and significantly better
LPIPS score over all baseline methods.

Method Android Crab2 Statue Yoda
PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑

3DGS [12] 23.32 0.794 0.159 31.76 0.925 0.172 20.83 0.830 0.148 28.92 0.905 0.192
WildGaussians [13] 24.67 0.828 0.151 30.52 0.909 0.213 22.54 0.863 0.129 30.55 0.905 0.202
SpotLessSplat [22] 24.20 0.810 0.159 33.90 0.933 0.169 21.97 0.821 0.163 34.24 0.938 0.156
Ours 24.54 0.813 0.083 34.48 0.952 0.076 23.08 0.861 0.097 33.48 0.947 0.082

H. Additional Experiment on RobustNerf [21]
dataset

We additionally report the performance of our method on
RobustNerf [21] in Tab. 2 and Fig. 6.

Figure 6. Qualitative result on RobustNerf dataset [21].

I. Additional Visualizations
We show additional visualizations in Fig. 1, Fig. 2 and Fig. 3.

J. Discussion
Dynamic-Static Elements. While our method effectively
handles semi-static objects, there is an inherent ambiguity
when certain subjects—like people or objects—remain static
most of the time in long video recordings. In this work,
we focus on a self-supervised approach that ensures robust
decomposition across diverse scenarios. For specific down-
stream applications, it may be beneficial to integrate our
method with additional semantic information for even more
accurate separation.
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Figure 4. Qualitative comparison of baseline methods [13, 28, 37] for distractor-free scene reconstruction on the Aria and EPIC-Field
sequences. Left of the dashed line: composed render comparisons; right: static reconstruction comparison(without camera masks).

Table 1. Distractor free scene reconstruction on NeRF On-the-go Dataset[26].The best , second best , and third best are highlighted. ‡:
±0.005 SSIM and LPIPS due to rounding uncertainty of originally reported result. Our method shows generally superior performance over
state-of-the-art methods.

Mountain Fountain Corner Patio Spot Patio-High Mean

PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑

RobustNeRF [27] 17.54 0.496 0.383 15.65 0.318 0.576 23.04 0.764 0.244 20.39 0.718 0.251 20.65 0.625 0.391 20.54 0.578 0.366 19.64 0.583 0.369
NeRF On-the-go [26] 20.15 0.644 0.259 20.11 0.609 0.314 24.22 0.806 0.190 20.78 0.754 0.219 23.33 0.787 0.189 21.41 0.718 0.235 21.67 0.720 0.234

3DGS [13] 19.40 0.638 0.213 19.96 0.659 0.185 20.90 0.713 0.241 17.48 0.704 0.199 20.77 0.693 0.316 17.29 0.604 0.363 19.30 0.668 0.253
WildGaussian [15] 20.43 0.653 0.255 20.81 0.662 0.215 24.16 0.822 0.139 21.44 0.800 0.138 23.82 0.816 0.138 22.23 0.725 0.206 22.16 0.746 0.182

DeSplat‡ [41] 19.59 0.715 0.175 20.27 0.685 0.175 26.05 0.885 0.095 20.89 0.815 0.115 26.07 0.905 0.095 22.59 0.845 0.125 22.58 0.813 0.130
Spotlesssplats [28] 21.64 0.725 0.195 22.38 0.768 0.166 25.77 0.877 0.117 22.40 0.833 0.108 25.35 0.866 0.127 22.98 0.808 0.155 23.42 0.813 0.145

Ours 22.31 0.746 0.163 22.40 0.764 0.139 25.94 0.869 0.078 22.88 0.850 0.087 26.59 0.886 0.089 23.35 0.799 0.124 23.91 0.819 0.113

lack clean view references—we present qualitative compar-
isons with baseline methods [13, 28, 37] in Fig. 4. Com-
pared to baseline methods [13, 28, 37], our method models

high-quality distractor-free static background with accurate
foreground separation. We additionally report video compar-
isons in our supplementary materials. For image collections
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Figure 4. Qualitative comparison of baseline methods [13, 28, 37] for distractor-free scene reconstruction on the Aria and EPIC-Field
sequences. Left of the dashed line: composed render comparisons; right: static reconstruction comparison(without camera masks).

Table 1. Distractor free scene reconstruction on NeRF On-the-go Dataset[26].The best , second best , and third best are highlighted. ‡:
±0.005 SSIM and LPIPS due to rounding uncertainty of originally reported result. Our method shows generally superior performance over
state-of-the-art methods.

Mountain Fountain Corner Patio Spot Patio-High Mean

PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑

RobustNeRF [27] 17.54 0.496 0.383 15.65 0.318 0.576 23.04 0.764 0.244 20.39 0.718 0.251 20.65 0.625 0.391 20.54 0.578 0.366 19.64 0.583 0.369
NeRF On-the-go [26] 20.15 0.644 0.259 20.11 0.609 0.314 24.22 0.806 0.190 20.78 0.754 0.219 23.33 0.787 0.189 21.41 0.718 0.235 21.67 0.720 0.234

3DGS [13] 19.40 0.638 0.213 19.96 0.659 0.185 20.90 0.713 0.241 17.48 0.704 0.199 20.77 0.693 0.316 17.29 0.604 0.363 19.30 0.668 0.253
WildGaussian [15] 20.43 0.653 0.255 20.81 0.662 0.215 24.16 0.822 0.139 21.44 0.800 0.138 23.82 0.816 0.138 22.23 0.725 0.206 22.16 0.746 0.182

DeSplat‡ [41] 19.59 0.715 0.175 20.27 0.685 0.175 26.05 0.885 0.095 20.89 0.815 0.115 26.07 0.905 0.095 22.59 0.845 0.125 22.58 0.813 0.130
Spotlesssplats [28] 21.64 0.725 0.195 22.38 0.768 0.166 25.77 0.877 0.117 22.40 0.833 0.108 25.35 0.866 0.127 22.98 0.808 0.155 23.42 0.813 0.145

Ours 22.31 0.746 0.163 22.40 0.764 0.139 25.94 0.869 0.078 22.88 0.850 0.087 26.59 0.886 0.089 23.35 0.799 0.124 23.91 0.819 0.113

lack clean view references—we present qualitative compar-
isons with baseline methods [13, 28, 37] in Fig. 4. Com-
pared to baseline methods [13, 28, 37], our method models

high-quality distractor-free static background with accurate
foreground separation. We additionally report video compar-
isons in our supplementary materials. For image collections
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Figure 5. Occlusion handling on the NeRF-on-the-Go dataset [26]. Compared to SpotlessSplats [28], our method better preserves fine
details in the training views (please consider zooming in for a clearer view) and reduces misclassification of dynamic regions, leading to
consistently better LPIPS on testing images. Right of dashed line: more results.

Table 2. Comparison dynamic modeling on Neu3D Dataset [16]. The best , second best , and third best are highlighted. Noticeably, our
method shows a consistently better LPIPS score compared to baseline methods.

Cut Beef Cook Spinach Sear Steak Flame Steak Flame Salmon Coffee Martini Mean

PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑ PSNR→ SSIM→ LPIPS↑

NeRFPlayer[32] 31.83 0.928 0.119 32.06 0.930 0.116 32.31 0.940 0.111 27.36 0.867 0.215 26.14 0.849 0.233 32.05 0.938 0.111 30.29 0.909 0.151
HyperReel [1] 32.25 0.936 0.086 31.77 0.932 0.090 31.88 0.942 0.080 31.48 0.939 0.083 28.26 0.941 0.136 28.65 0.897 0.129 30.72 0.931 0.101
HexPlane [3] 30.83 0.927 0.115 31.05 0.928 0.114 30.00 0.939 0.105 30.42 0.939 0.104 29.23 0.905 0.088 28.45 0.891 0.149 30.00 0.922 0.113
KPlanes [7] 31.82 0.966 0.114 32.60 0.966 0.114 32.52 0.974 0.104 32.39 0.970 0.102 30.44 0.953 0.132 29.99 0.953 0.134 31.63 0.964 0.117
MixVoxels [40] 31.30 0.965 0.111 31.65 0.965 0.113 31.43 0.971 0.103 31.21 0.970 0.108 29.92 0.945 0.163 29.36 0.946 0.147 30.81 0.960 0.124
SWinGS [31] 31.84 0.945 0.099 31.96 0.946 0.094 32.21 0.950 0.092 32.18 0.953 0.087 29.25 0.925 0.100 29.25 0.925 0.100 31.12 0.941 0.095
4DGS [43] 32.66 0.946 0.053 32.46 0.949 0.052 32.49 0.957 0.041 32.75 0.954 0.040 29.00 0.912 0.081 27.34 0.905 0.083 31.12 0.937 0.058
Ours 32.56 0.957 0.042 32.61 0.950 0.041 33.20 0.956 0.035 32.75 0.955 0.034 29.23 0.916 0.068 28.80 0.916 0.062 31.52 0.942 0.047
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Figure 6. Our method robustly handles various challenges, preserv-
ing clean and high quality static background.

dataset Nerf-on-the-go[26] with clean reference test views,
we report detailed per-scene metrics including peak signal-
to-noise ratio (PSNR), perceptual quality (LPIPS) [50], and
structural similarity index (SSIM) [42] against baseline
methods[13, 15, 26–28, 41] on the hold-out test set in Tab. 1.
Our methods generalize to image collections and achieve

state-of-the-art results. Notably, our method consistently
achieves significantly better LPIPS scores over the previous
SOTA method SpotlessSplats [28]. We show our method
robustly handles occlusion and reconstructs fine static de-
tails compared to SpotlessSplats [28]in Fig. 5. Additionally,
our methods could naturally handle various input challenges,
such as camera motion blur and lens flare, as shown in Fig. 6.

Moreover, we compare our method’s composed render
quality with various baseline methods [1, 3, 7, 31, 32, 40, 43]
in Tab. 2, where our methods achieve consistently better
LPIPS scores. We qualitatively show the dynamic recon-
struction comparison and the rendering FPS of [43] and our
method in Fig. 7(on RTX4090), where our methods show
better reconstructed fine details and better test-time render-
ing efficiency. Moreover, we compare our method with
4DGS [45] on HyperNeRF [25] dataset in Fig. 8, showing
that our method effectively regularizes gaussian movements
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Figure 12. Visualization of dynamic modeling on peel banana and chicken sequence on HyperNerf Vrig dataset [25] dataset. Our methods
reconstruct high-quality dynamic scenes with an efficient dynamic-static decoupled representation.

Figure 13. Qualitative comparison of baseline methods[15, 28] on
Nerf-On-the-go dataset.

E. Efficiency Analysis on Neu3D [16] dataset

Our dynamic-static hybrid representation enables:(a) Much
higher FPS: The time critical process of deformation predic-

tion in 4DGS scales with the number of dynamic Gaussians.
Table 4 shows we render 3! faster than 4DGS with supe-
rior quality by minimal dynamic element modeling with
our dynamic-static decoupling design. (b) Better Quality
We achieve much higher LPIPS and finer details in static
(no stray motion) and dynamic (better handling disappear-
ing gaussians), as reported in our paper and project page:
https://batfacewayne.github.io/DeGauss.
io/. Even on Coffee Martini, Flame Salmon with very
far objects that poses challenges to gaussian splatting meth-
ods, our LPIPS and details remain best. (c) Applications
The decoupled static with 3DGS seamlessly enables diverse
applications as editing/styling.

F. Strict Monocular Input
Monocular reconstruction is extremely challenging. And
compared to NeRF methods [25], dynamic gaussian meth-
ods [18, 43, 47] are highly expressive but much harder to
regularize, generalizing poorly to novel views [33]( Fig. 14).
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