

ICCV

OCT 19-23, 2025

HONOLULU HAWAII

PEFTDiff: Diffusion-Guided Transferability Estimation for Parameter-Efficient Fine-Tuning

Prafful Kumar Khoba^{1,2}, Zijian Wang², Chetan Arora¹, Mahsa Baktashmotlagh²

¹Indian Institute of Technology Delhi, ²The University of Queensland

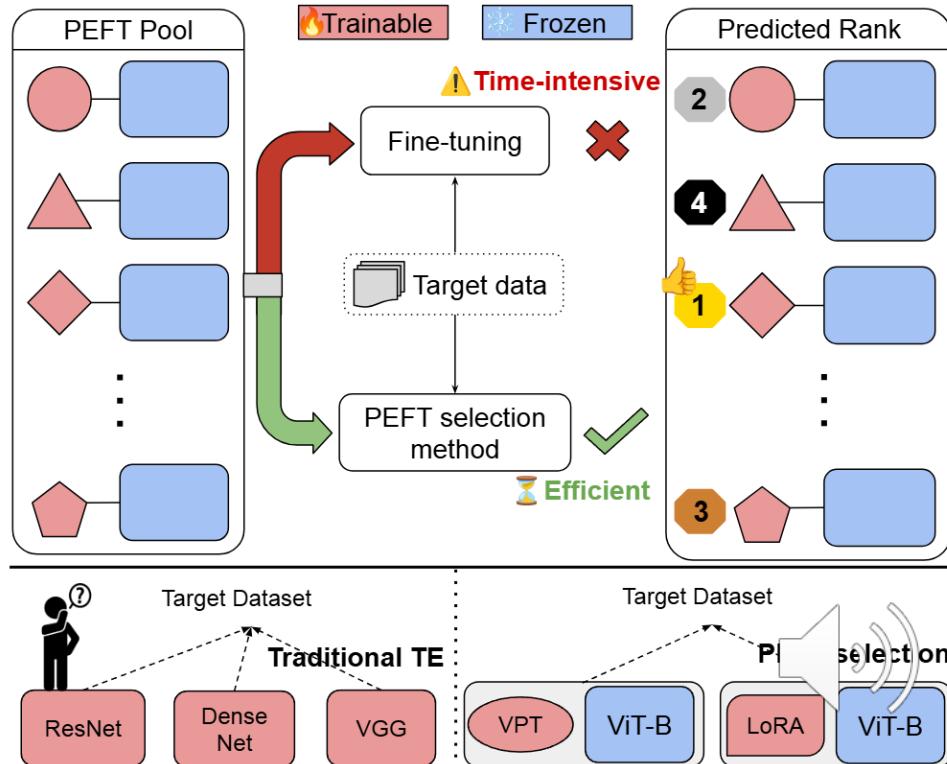
Motivation

Keywords:

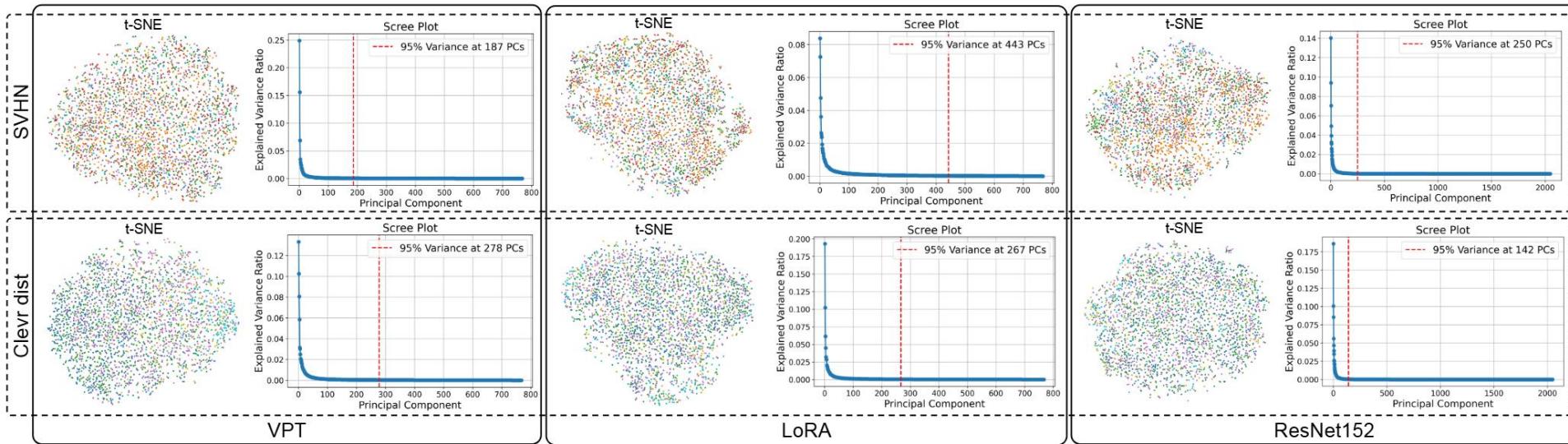
1. PEFT: Parameter-Efficient Fine-Tuning
2. Transfer Learning
3. Transferability estimation: Metrics that predicts the adaptability of a pre-trained model on downstream dataset with minimal computation cost.

Motivation:

Given the increasing number of PEFT techniques, selecting the most suitable one for a given task is a nontrivial challenge.



Uncovering why Previous TE does not work



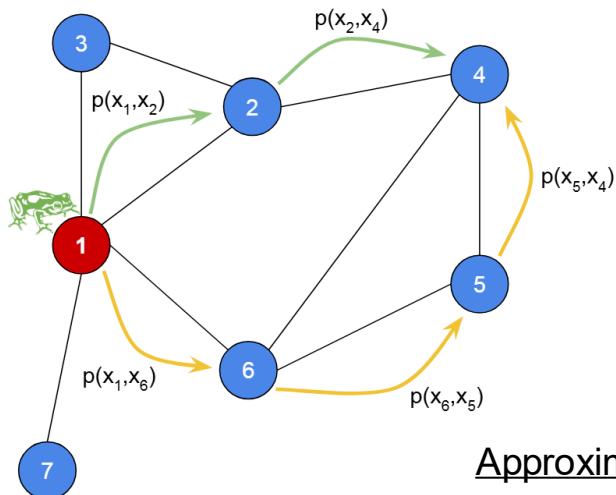
ResNet152 embeddings require significantly fewer principal components (**approximately 7%**) to retain 95% of the variance, indicating a simpler geometric structure. In contrast, PEFT embeddings exhibit substantially higher complexity, requiring **30–50%** of principal components to achieve the same variance retention.

How to overcome it

- To address these challenges, we propose a diffusion-based approach that leverages diffusion processes to model feature relationship.
- Diffusion maps (introduced by Coifman and Lafon, 2006) is a non-linear technique. It transforms the data according to parameters of its underlying geometry.

Diffusion Maps and Diffusion distance

Diffusion map construct a graph, based on representation of the features, where nodes represent data points and edges encode transition probabilities based on distance between the nodes.



Connectivity $k(z_i, z_j) = \exp\left(\frac{-\|z_i - z_j\|^2}{\sigma^2}\right)$

Apply K-NN to Sparsify $K_{ij} = k(z_i, z_j)$.

Transition Matrix $P = D^{-1}K$, $D_{ii} = \sum_j K_{ij}$

t-step in the diffusion space $P^t = P \cdot P \cdots P$ (t times)

Diffusion Distance $D_t^2(z_i, z_j) = \sum_{u \in z} |p_t(z_i, u) - p_t(z_j, u)|^2$

Approximating Diffusion Distance $D_t^2(z_i, z_j) \approx \sum_{l=1}^c (\lambda_l^t)^2 (\phi_l(z_i) - \phi_l(z_j))^2$

PEFT selection score

The **goal** is to assess how well a PEFT method preserves intra-class compactness and inter-class separability compared to a frozen backbone.

- A negative change in intra-score indicates that PEFT technique has improved intra-class compactness.
- A positive change in inter-score suggests that the PEFT technique has increased inter-class separation.

Intra-class Score

$$S_t(C_k) = \frac{1}{|C_k|} \sum_{z_i \in C_k} D_t^2(z_i, \mu_{C_k})$$

Inter-class Score

$$S_t(C_k, C_l) = D_t^2(\mu_{C_k}, \mu_{C_l})$$

$$\Delta S_t^{\text{intra}} = S_t^{\text{intra}}(P_{\text{PEFT}_i}) - S_t^{\text{intra}}(P_{\text{backbone}})$$

$$\Delta S_t^{\text{inter}} = S_t^{\text{inter}}(P_{\text{PEFT}_i}) - S_t^{\text{inter}}(P_{\text{backbone}})$$

PEFT selection score

$$S_{\text{PEFT}_i} = \hat{\Delta S}_t^{\text{inter}} + \hat{\Delta S}_t^{\text{intra}}$$

Experiment Setup

- Dataset: Visual Task Adaptation Benchmark (VTAB) contains **19 datasets** that can be categorized into **Natural, Specialized** and **Structured**
- PEFT Pool: Keeping ViT-B16 as backbone, we curate a diverse pool of **9** PEFT techniques. This includes addition-based methods such as **Adapter, Convvpass, Convvpass Attention, and Visual Prompt Tuning**, which introduce minimal trainable layers or tokens to the model. From the partial-based category, we incorporate **BitFit, LoRA, Fact-TK, and Fact-TT**, which selectively modify parameters while keeping most of the model frozen. Finally, we include **NOAH** from unified-based methods, which combines multiple fine-tuning strategies into a single framework.
- Ground Truth Ranking: Established by fine-tuning each pre-trained PEFT (trained on ImageNet) on the VTAB-1k benchmark.
- Correlation Measurement: We use weighted Kendall's τ_w , where **Larger τ_w indicates better correlation** and better metric.

Performance Comparison (T_w)

Dataset	Cal101	Cifar	DTD	OxF	OxP	SVHN	Sun	PatchC	Euro	Resisc	DR	Avg. Nat	Avg. Spec
NLEEP[25]	-0.496	<u>0.022</u>	0.384	-0.820	-0.365	-0.135	0.276	-0.367	-0.556	-0.177	<u>0.328</u>	-0.162	-0.193
NCTI[34]	0.146	-0.245	<u>0.551</u>	0.431	-0.771	<u>0.487</u>	0.225	<u>-0.101</u>	0.381	<u>0.680</u>	0.195	0.118	0.289
SFDA[31]	-0.068	-0.051	<u>0.512</u>	<u>0.509</u>	-0.544	<u>0.515</u>	0.210	-0.224	0.381	0.510	0.258	0.155	0.231
LogME[37]	<u>0.404</u>	-0.099	<u>0.692</u>	-0.336	<u>-0.274</u>	0.469	<u>0.371</u>	-0.224	<u>0.591</u>	<u>0.787</u>	0.307	<u>0.175</u>	<u>0.365</u>
Ours	0.551	0.866	0.712	0.692	0.274	0.884	0.441	0.576	0.763	0.396	0.498	0.631	0.558

Natural Datasets

Specialized Datasets

Analysis

- Performs best for all the dataset in Natural category.
- Performs best for 3 out of 4 in Specialized category.
- On an average, our metric performs better than Traditional TE metric for both Natural and Specialized datasets.

Performance Comparison (T_w)

Dataset	ClevC	ClevD	DmLab	Kitti	DspL	DspO	SNazi	SNelev	Avg. Str	Overall Avg.
NLEEP[25]	0.434	<u>0.232</u>	0.702	-0.136	<u>0.638</u>	0.113	0.826	-0.194	0.327	0.037
NCTI[34]	<u>0.439</u>	0.123	0.461	-0.193	0.198	0.194	0.682	<u>0.052</u>	0.245	0.207
SFDA[31]	0.349	-0.013	0.328	NaN	0.035	<u>0.472</u>	0.682	0.006	0.266	0.215
LogME[37]	0.535	0.025	0.328	0.531	0.528	0.763	<u>0.682</u>	-0.265	<u>0.391</u>	<u>0.306</u>
Ours	0.230	0.404	<u>0.471</u>	<u>0.212</u>	0.916	0.402	0.275	0.266	0.397	0.517

Structured Datasets

Analysis

- On an average, our metric performs better than Traditional TE metric for both Structured datasets.
- Overall, in all the three categories, our metric performs the best which shows the efficacy of our diffusion-based metric.

Method	Average Improvement
NLEEP	1297.29%
NCTI	149.75%
SFDA	140.46%
LogME	68.95%

Ablation study

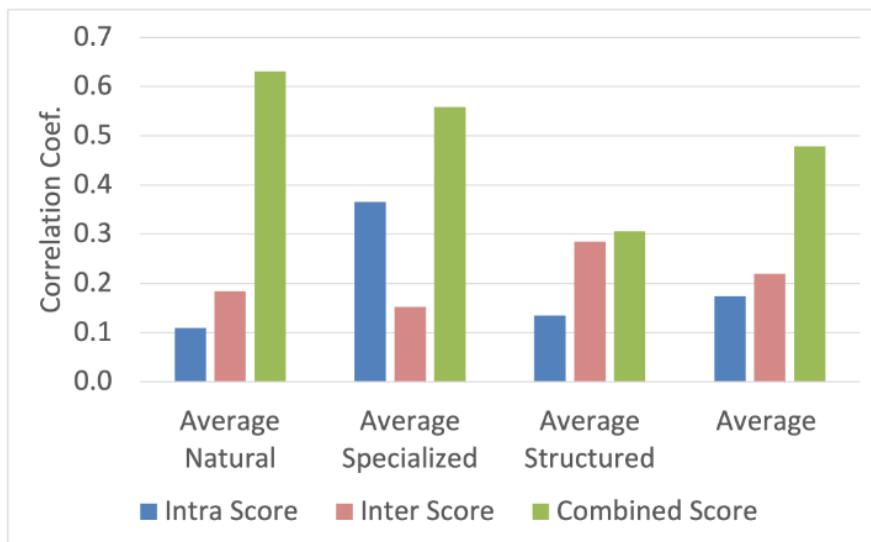
The final PEFT selection score is derived from both intra-class and inter-class diffusion distances.

Intra-class diffusion score alone: **Tw = 0.174**

Inter-class diffusion score alone: **Tw = 0.22**

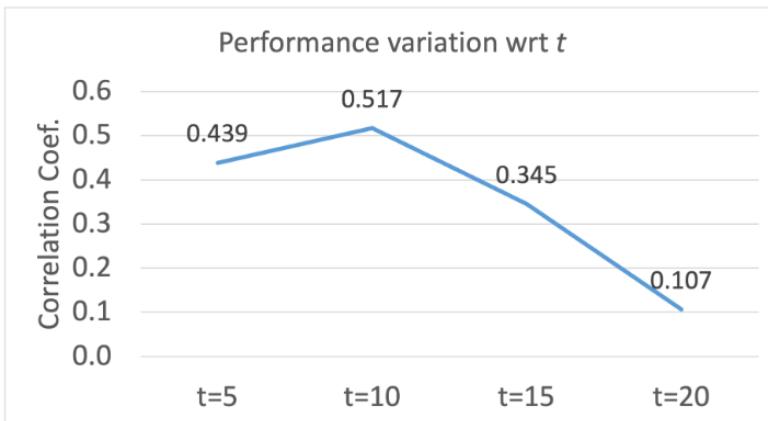
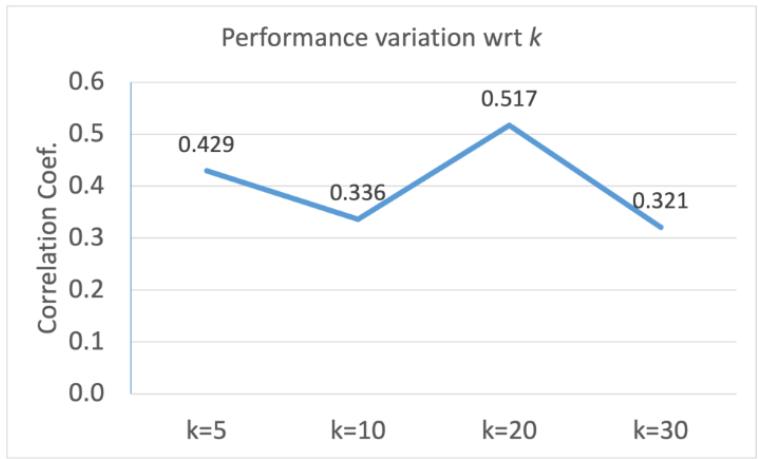
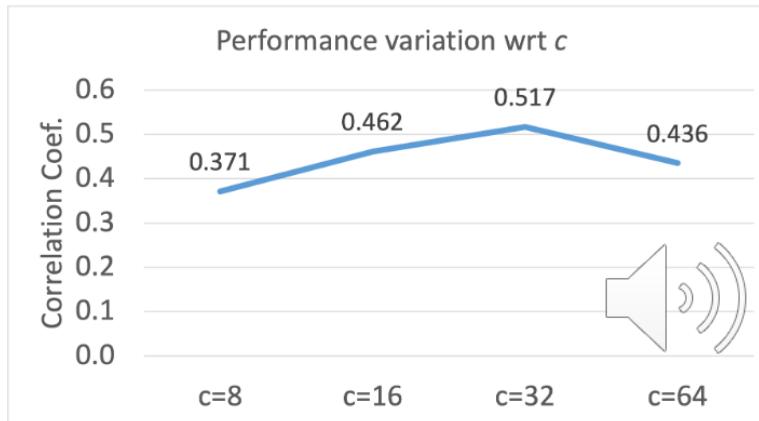
Combined/ Final diffusion score: **Tw = 0.517**

Both intra and inter-class scores are essential for accurate PEFT ranking.



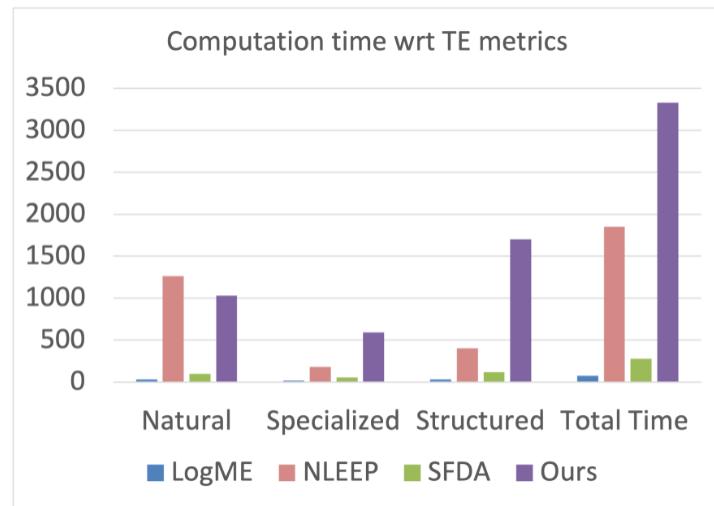
Hyper-parameter analysis

- To find the best hyper-parameter, we do a grid search for each of the hyper-parameter, while keeping the other fixed.
- For example, to isolate the effect of t , we fix the optimal values of k and c and vary t .



Time complexity

- Our method exhibits the highest computational cost among the evaluated metrics, except for the Natural category, where it is lower than NLEEP.
- A key advantage of our method is its substantial computational savings compared to full fine-tuning of PEFT techniques.
- This demonstrates that while our method is more computationally demanding than some transferability estimation baselines, it remains highly efficient compared to exhaustive fine-tuning, making it a practical and scalable alternative for PEFT selection.



Dataset Categories	Ours (min)	PEFT Fine-tuning (min)	Speed-up
Natural	17.18	3748.5	218.23×
Specialized	9.87	2106	213.0×
Structured	28.39	5220	18.5×
Total Time	55.44	11074.5	199.77×

Thank you !!

