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Motivation

Keywords:

1. PEFT: Parameter-Efficient Fine-Tuning

2. Transfer Learning

3. Transferability estimation: Metrics that
predicts the adaptability of a pre-trained
model on downstream dataset with
minimal computation cost.

Motivation:

Given the increasing number of PEFT
techniques, selecting the most suitable one for
a given task is a nontrivial challenge.
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Uncovering why Previous TE does not work
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ResNet152 embeddings require significantly fewer principal components (approximately 7%) to retain .
95% of the variance, indicating a simpler geometric structure. In contrast, PEFT embeddings exhibif;/ N
substantially higher complexity, requiring 30—-50% of principal components to achieve the same var
retention.
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How to overcome it

To address these challenges, we propose a diffusion-based approach that leverages diffusion
processes to model feature relationship.

Diffusion maps (introduced by Coifman and Lafon, 2006) is a non-linear technique. It transforms
the data according to parameters of its underlying geometry.
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Diffusion Maps and Diffusion distance

Diffusion map construct a graph, based on

representation of the features, where nodes . —||z; — g H2
represent data points and edges encode ~ connectivity  k(zj,z;) = exp 2
transition probabilities based on distance

between the nodes. Apply K-NN to Sparsify K;; = k(zi, z;).

P(X5Xy)

Transiton Matrix =~ P = D 'K o D= ZK‘ij

J
e Pbxs) t-step in the diffusion space Pt — pP.pP... P (t times)

e 2
Diffusion Distance D (zi, 25) Z pe(zi, u) — pe(z5,u)

ueEz /
/

\\
P(Xxs) \

c
Approximating Diffusion Distance D7 (z;, z;) ~ Z()\f)g (P1(z:) — c,b;
=1

(m)




PEFT selection score

The goal is to assess how well a PEFT

method preserves intra-class

compactness and inter-class
separability compared to a frozen
backbone.

« A negative change in intra-score
indicates that PEFT technique has
improved intra-class compactness.

« A positive change in inter-score
suggests that the PEFT technique
has increased inter-class separation.
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1
Intra-class Score SL(C;c) = ﬁ Z Df(zz', ,u,ck)
k

z; €CL

Inter-class Score Si(C,Cp) = D? (e icy)

A Sintra _ Sintra( PPEFT;) . Sintra( Pbackbone)

A Sinter _ S!itnter( PPEFTi) . Sinter( Pbackbone)

~ _inter ~ _intra

PEFT selection score  Spgrr, = AS, + AS,
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Experiment Setup

Dataset: Visual Task Adaptation Benchmark (VTAB) contains 19 datasets that can be categorized
into Natural, Specialized and Structured

PEFT Pool: Keeping ViT-B16 as backbone, we curate a diverse pool of 9 PEFT techniques. This
includes addition-based methods such as Adapter, Convpass, Convpass Attention, and Visual
Prompt Tuning, which introduce minimal trainable layers or tokens to the model. From the partial-
based category, we incorporate BitFit, LORA, Fact-TK, and Fact-TT, which selectively modify
parameters while keeping most of the model frozen. Finally, we include NOAH from unified-based
methods, which combines multiple fine-tuning strategies into a single framework.

Ground Truth Ranking: Established by fine-tuning each pre-trained PEFT (trained on ImageNet)
on the VTAB-1k benchmark.

Correlation Measurement: We use weighted Kendall's 1, , where Larger 1, indicates better
correlation and better metric.
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Performance Comparison (T,,)

HAWAII

Dataset Call01 Citar DTD OxF OxP SVHN Sun PatchC  Euro Resisc DR | Avg. Nat Avg. Spec
NLEEP[25] | -0.496 0.022 0384 -0.820 -0.365 -0.135 0276 -0367 -0.556 -0.177 0.328 | -0.162 -0.193
NCTI[34] 0.146 -0.245 0551 0431 -0.771 0487 0225 -0.101 0381 0.680 0.195 0.118 0.289
SFDA[31] -0.068  -0.051 0512 0509 -0.544 0515 0210 -0.224 0381 0510  0.258 0.155 0.231
LogME[37] 0404 -0.099 0.692 -0336 -0274 0469 0371 -0224 0591 0.787 0307 0.175 0.365
Ours 0.551 0.866 0.712 0.692 0.274 0.884 0441 0.576 0.763 0396 0.498 0.631 0.558
\ J |\
| |
Natural Datasets Specialized Datasets
Analysis

« Performs best for all the dataset in Natural category.
» Performs best for 3 out of 4 in Specialized category.

« On an average, our metric performs better than Traditional TE metric for both Natural and Specialized

datasets.
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Performance Comparison (T,,)

Dataset ClevC ClevD DmlLab Kitti Dspl. DspO SNazi SNelev | Avg. Str | Overall Avg.
NLEEP[25] | 0434 0232 0.702 -0.136 0.638 0.113 0826 -0.194 0.327 0.037
NCTI[34] 0.439 0.123 0461 -0.193 0.198 0.194 0.682 0.052 0.245 0.207
SFDA[31] 0.349 -0.013 0.328 NaN 0.035 0472 0.682 0.006 0.266 0.215
LogME[37] | 0.535 0.025 0.328 0.531 0528 0.763 0.682 -0.265 0.391 0.306
Ours 0.230 0.404 0471 0.212 0916 0402 0275 0.266 0.397 0.517
\ J
I
Structured Datasets
Analysis Method Average Improvement

« On an average, our metric performs better than

Traditional TE metric for both Structured datasets. NLEEP 1297.29%

» Overall, in all the three categories, our metric performs NCTI 149 75%
the best which shows the efficacy of our diffusion- —
based metric. SFDA 140.46% | <[\

LogME 68.95% . " //
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Ablation study

The final PEFT selection score is derived from both
intra-class and inter-class diffusion distances.

Intra-class diffusion score alone: Tw = 0.174
Inter-class diffusion score alone: Tw = 0.22
Combined/ Final diffusion score: Tw = 0.517

Both intra and inter-class scores are essential for
accurate PEFT ranking.

Correlation Coef.
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Hy pe r- pa ra m ete r a n a I ySI S Performance variation wrt k

0.6
« To find the best hyper-parameter, we do a grid o

0.5
. W 0.429
search for each of the hyper-parameter, while &
_ ) o 04 0336 321
keeping the other fixed. 503
« For example, to isolate the effect of t, we fix the ¢ 0.2
optimal values of k and ¢ and vary t. S 01
0.0
k=5 k=10 k=20 k=30
Performance variation wrt t Performance variation wrt ¢
0.6 0.517 0.6 0.517
% 0.5 0.439 g 0.5 0.462 0.436
8 0.4 0.345 O 0.4 0.3V/\
c c
20.3 20.3
L 1
202 107 L 0.2
S 01 So1
0.0 0.0

t=5 t=10 t=15 t=20 c= c=16 c=32
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Time complexity

* Our method exhibits the highest computational cost

iAWl

Computation time wrt TE metrics

among the evaluated metrics, except for the Natural :222
category, where it is lower than NLEEP. 5500
« A key advantage of our method is its substantial ;g0
computational savings compared to full fine-tuning of 1500
PEFT techniques. 1000
* This demonstrates that while our method is more 500 I I
computationally demanding than some transferability 0 - -
estimation baselines, it remains highly efficient Natural  Specialized Structured Total Time
compared to exhaustive fine-tuning, making it a WLlogME WNLEEP mSFDA mOurs
practical and scalable alternative for PEFT selection.
Dataset Categories Qurs (min) PEFT Fine-tuning (min) Speed-up
Natural 17.18 3748.5 218.23x
Specialized 9.87 2106 213/ Px
Structured 28.39 5220 14 Fx )
Total Time 55.44 11074.5 199.77x
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