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Background & Motivation

Many signals are inherently spherical
(omnidirectional images, earth maps etc.)

In the past, spherical pattern matching was used for:
 Point cloud registration (global alignment on SO(3))

» Spherical image registration (rotation estimation)
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Background & Motivation

In spherical cross-correlation, spherical patterns
are treated as functions

We treat spherical pattern matching as point pattern
registration on the surface of a unit sphere
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Background & Motivation

One to One Correspondence (easy) The problem becomes challenging
[closed form solution exists] under large rotations, heavy

noise/outliers, or complex patterns.
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Background & Motivation

Corresponded based Methods

Finding reliable correspondences in
spherical patterns with noise and outliers is

extremely challenging. Due to

- lack of geometric variation
- overlapping regions, and inherent

symmetries
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Background & Motivation

Spherical Correlation Based Methods
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Spherical cross-correlation is expensive; runtime grows rapidly with
the rotational sampling, spherical harmonic bandlimit.
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Methods

We developed 3 Algorithms

Algorithm 1: SPMC (Spherical Pattern Matching by Correlation)
Algorithm 2: FRS (Fast Rotation Search)

Algorithm 3: SPMC + FRS (combines the first two)
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Mean Direction of Spherical Pattern

S2- distribution
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Template Pattern: I M ethOd S
Source Pattern: Il Algorithm 1: SPMC

2D Projection and 1D correlation
with circular shift
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Template Pattern: M et h Od S

Source Pattern: IR

Axis Direction Angles
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Methods

- Mean direction is sensitive - Sensitive to initialization
to when noise and outliers
are significant

Algorithm 3: SPMC +FRS

- SPMC provides a good initialization. FRS converges even faster
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Novel Synthetic Dataset

Robust Vector Alignment Dataset

Source Pattern [l Template Pattern [
Source and Template Patterns ‘Registration using (SPMC+FRS)
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FPFH+dUASAR

SPMC+FRS

Dataset A3
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_. Time Taken (seconds, log scale)
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Time Complexity: ~O(N)
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Application 1: Point Cloud Registration

Rotational alignment (our method)
Translation estimation [adaptive voting (e.g TEASER) or centroid shift (for complete to complete)]

Spherical Representation of Point Cloud

Applicable if we know the complete geometry of
the objects (complete to complete registration)
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Application 1: Point Cloud Registration

Point Clouds Spherical Embedding After Registration

CASE

(Centroid Aware Spherical
Embedding)

Complete to Complete

EGI

(Extended Gaussian Image)
Partial to Partial,

Partial to Complete
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SPMC (Ours)
[CASE]

No corr.
No Noise
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Quantitative Evaluation: ModelNet40
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Qualitative Evaluation:
Bunny Dataset
(complete to complete)

\/a

Source Pattern [ |

Configuration

No Noise
No Outliers
S(src) = S(temp)

No Noise
50% added outliers
S(src) = 4xS(temp)

0.01 Noise
90% added outliers
S(src) = S(temp)

0.1 Noise
90% added outliers

S(src) = S(temp)
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S(src) = Source Scale

CASE
(after SPMC+FRS)

S(tmp) = Template Scale

After Registration
(SPMC+FRS+Translation)
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EGI Initial  After Alignment Registration

3D Match

KITTI

RANSAC 1K mm
TEASER++ mm
Ours [ ]

Quantitative Evaluation:
KITTI, 3D Match
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Application 2: Spherical Image Registration

Target Spherical Image

Source Spherical Image
(Rotated + Cluttered)

Effect of different thresholding value
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Qualitative
Evaluation:

Template Spherical Image
& 2D Projection

Source 2D Projection

Rotated
Source Sph. Image

Rotated + Noisy
Source Sph. image

Assistive H[]N["_l_”_u
ICCV s i 21



Evaluation:
Our Method Clutter = 19%
Rotation Error (deg)
(deg)
Alpha 55.27 0.20
Beta 12.11 0.21
Gamma 11.02 1.26

Source
Spherical

ages

Template Spherical Image
& 2D Projection

2D Projection of Source
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2D Projection of Source

After Alignment
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Pixel Wise Difference

D%=29.24

D/u

D%=13.65

38.84

Thresolded Difference  RotError

(Clutter)

C%=19.30

(Degrees)

0.02

1.09

0.83

0.94

1.29



Limitation and Future Work

Ground Truth
(~20% overlan)

Inputs Our Registration

Point cloud registration depends on the quality of spherical embedding.

For partial clouds, rotation-invariant embeddings like EGI can be challenging,
often requiring >65% overlap for partial-to-partial registration.

A future direction of this work is to improve rotation-invariant spherical
embeddings for partial point clouds
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Summary

We introduce two novel algorithms for spherical point- pattern registration, along with a
third hybrid algorithm that combines the two.

Our algorithm runs ~O(n) time complexity.

We demonstrate the adaptability of our algorithms for point cloud registration.
Additionally, we present the Centroid Aware Spherical Embedding (CASE) method, to
convert a point cloud into spherical pattern.

We propose a novel approach for converting spherical images to spherical point clouds,
enabling tasks such as rotation estimation between two spherical images.

We present the publicly available “Robust Vector Alignment Dataset,” this can be used for
evaluation of algorithms vector set alignment, spherical pattern alignment, Wahaab problem etc.
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Thanks for watching

Webpage  Dataset
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