

ICCV 2025

Correspondence-Free Fast and Robust Spherical Point Pattern Registration

Anik Sarker₁, Alan T. Asbeck₁

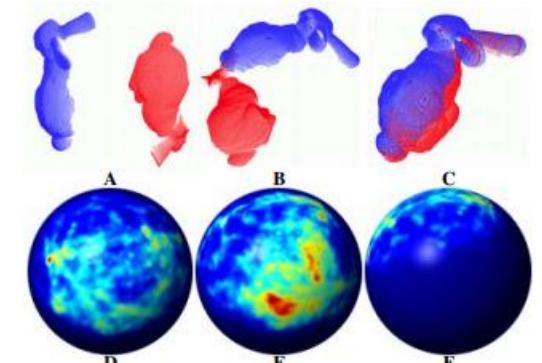
₁ Virginia Tech. Blacksburg, Virginia.

Background & Motivation

Many signals are inherently spherical
(omnidirectional images, earth maps etc.)

In the past, spherical pattern matching was used for:

- Point cloud registration (global alignment on $SO(3)$)
- Spherical image registration (rotation estimation)



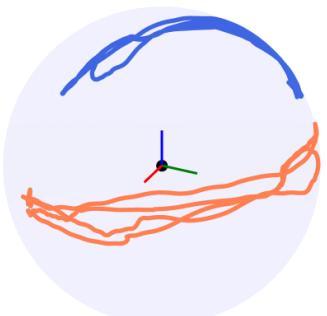
[Makadia et.al]

Background & Motivation

In spherical cross-correlation, spherical patterns are treated as functions

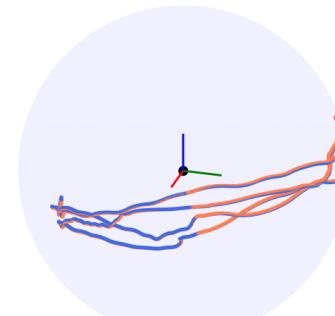
We treat spherical pattern matching as point pattern registration on the surface of a unit sphere

Unregistered



Source Pattern
Template Pattern

Registered

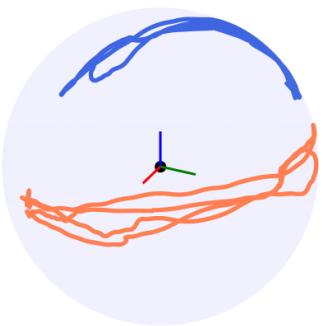


Spherical Point Pattern Matching Algorithm

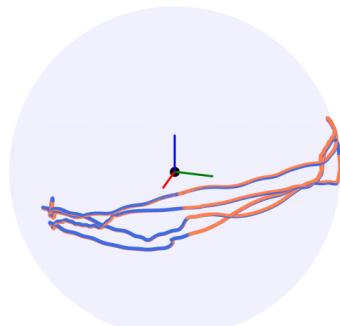
Background & Motivation

One to One Correspondence (easy)
[closed form solution exists]

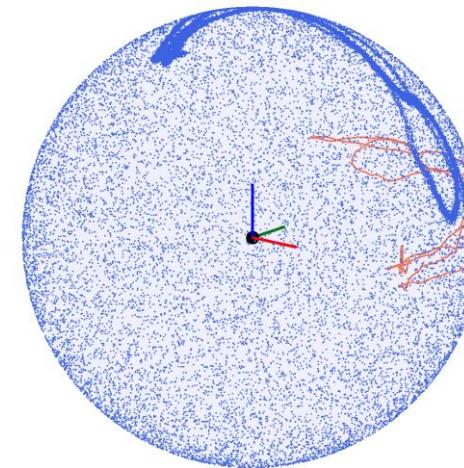
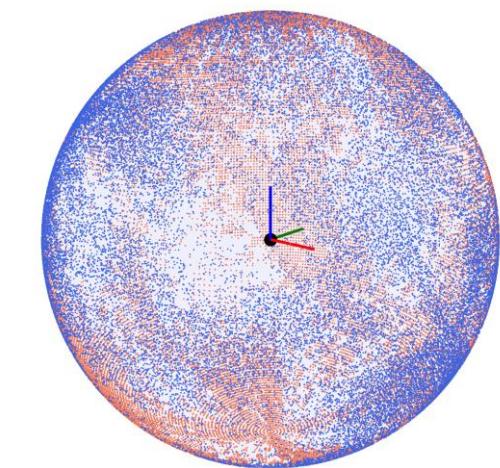
Unregistered



Registered



The problem becomes challenging under large rotations, heavy noise/outliers, or complex patterns.

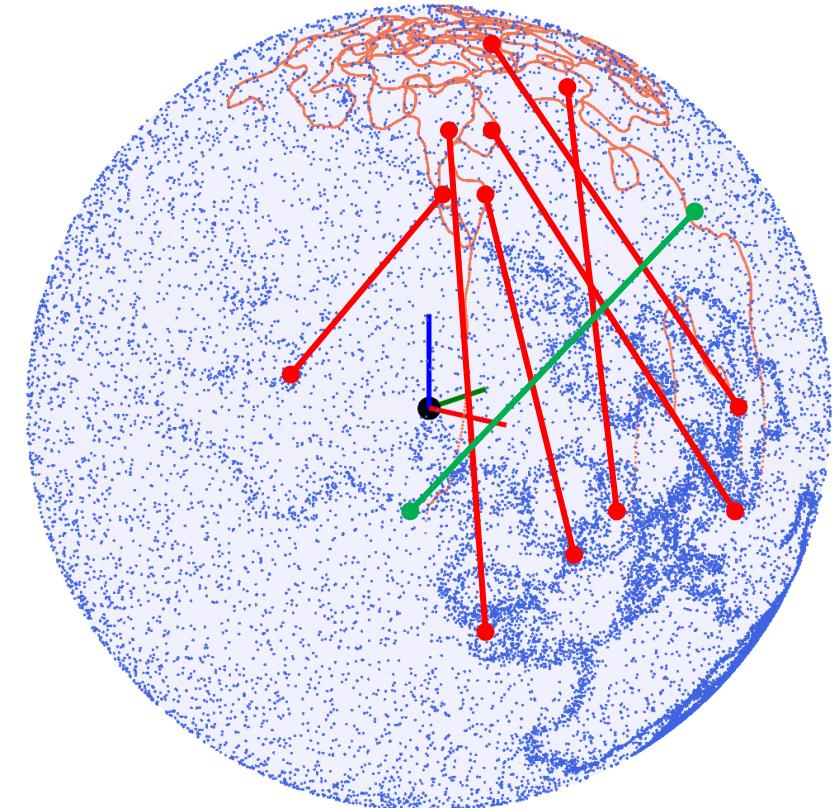


Background & Motivation

Corresponded based Methods

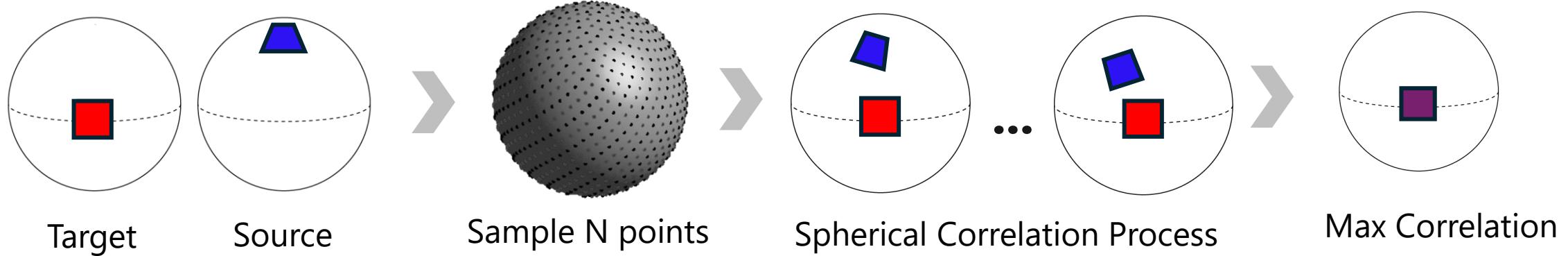
Finding reliable correspondences in spherical patterns with noise and outliers is extremely challenging. Due to

- lack of geometric variation
- overlapping regions, and inherent symmetries



Background & Motivation

Spherical Correlation Based Methods



Spherical cross-correlation is expensive; runtime grows rapidly with the rotational sampling, spherical harmonic bandlimit.

Methods

(Overview)

We developed 3 Algorithms

Algorithm 1: SPMC (Spherical Pattern Matching by Correlation)

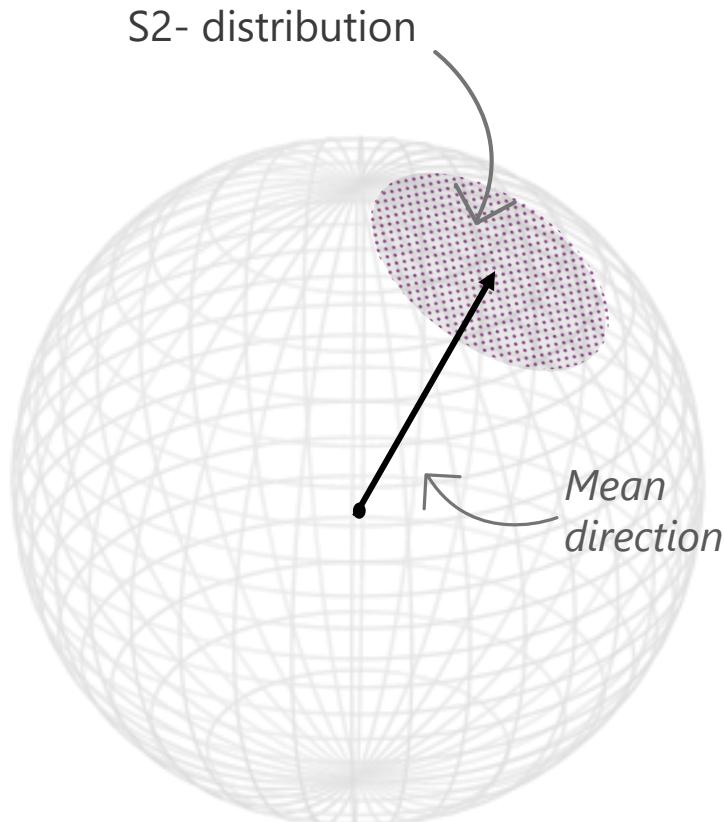
Algorithm 2: FRS (Fast Rotation Search)

Algorithm 3: SPMC + FRS (combines the first two)

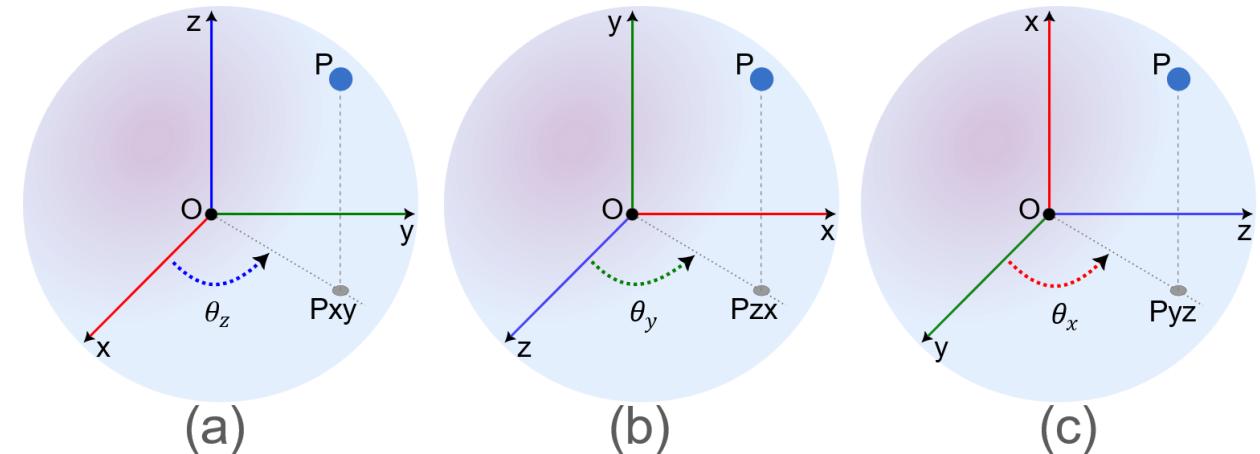
Methods

(Terminologies)

Mean Direction of Spherical Pattern



Axis Direction Angles of an S2 Point

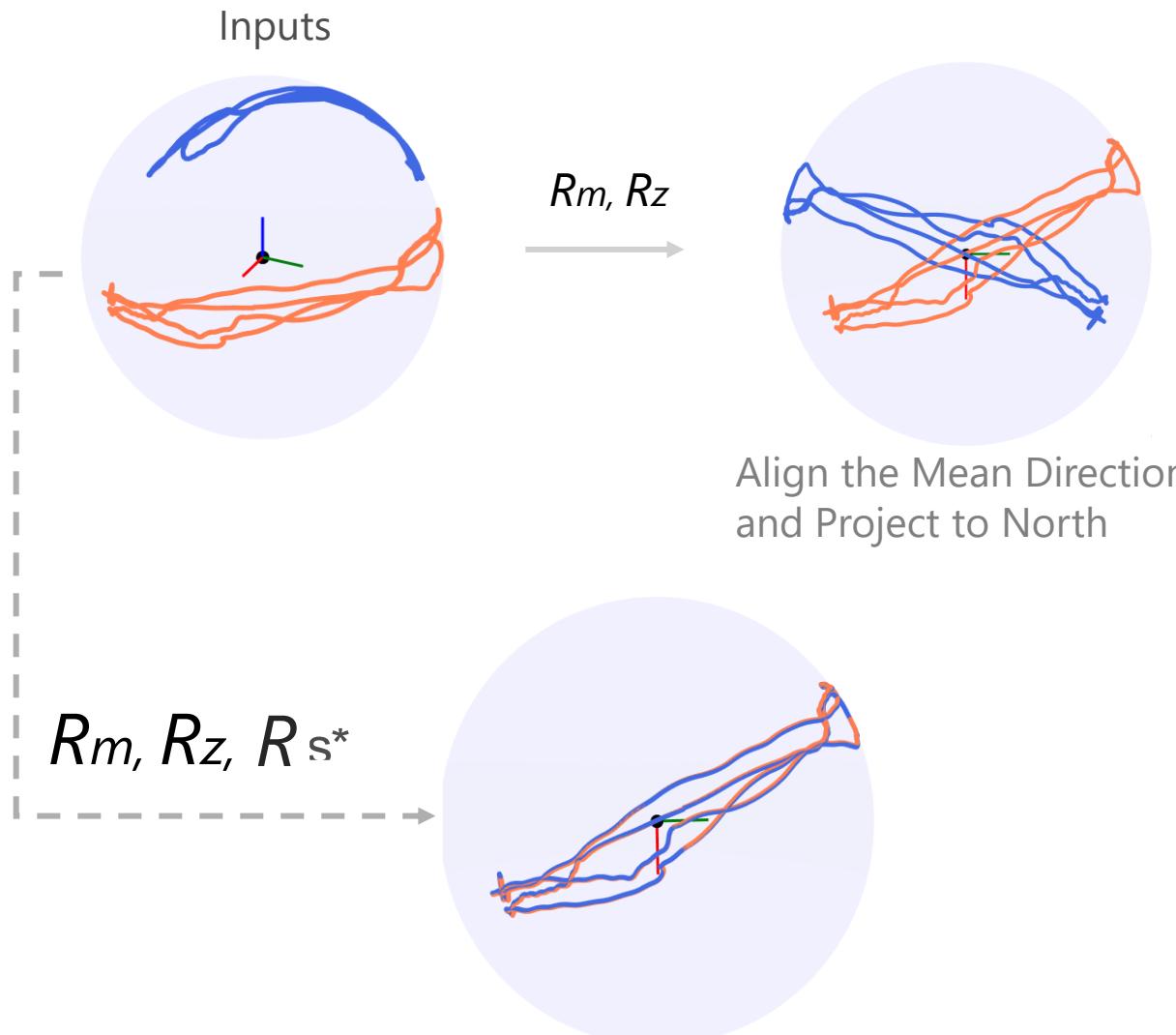


Template Pattern:

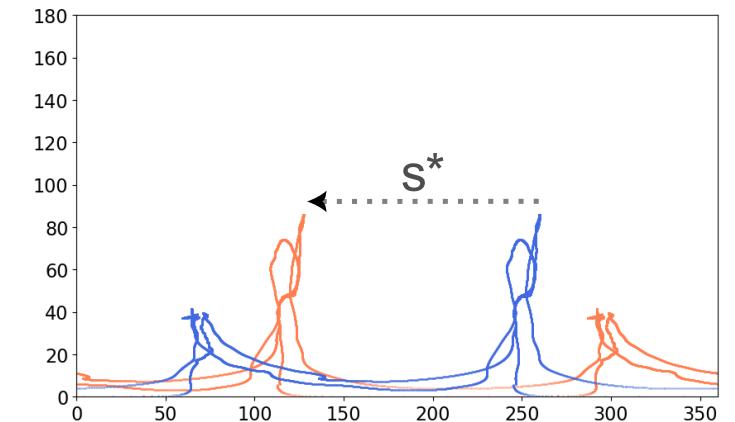
Source Pattern:

Methods

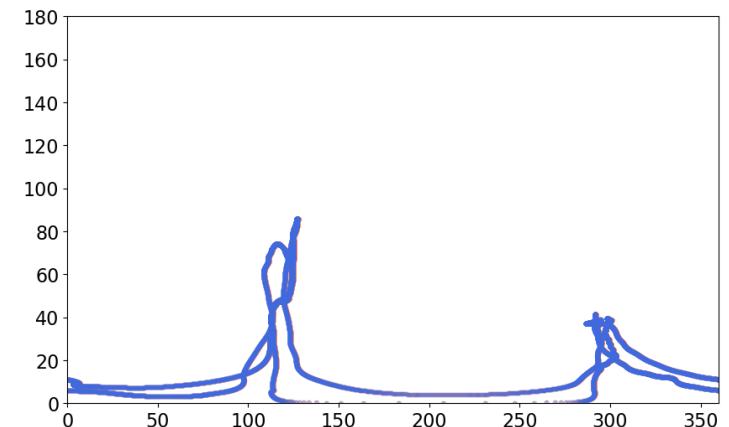
Algorithm 1: SPMC



2D Projection and 1D correlation with circular shift



$R s^*$

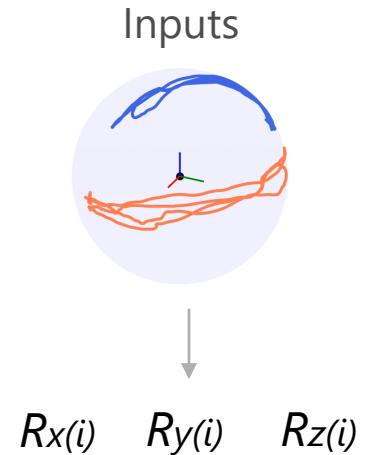


Methods

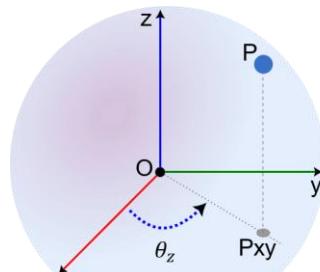
Algorithm 2: FRS

Template Pattern:

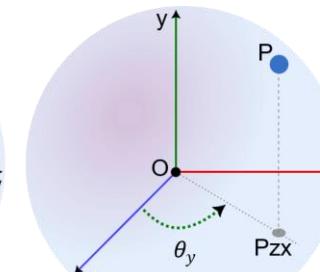
Source Pattern:



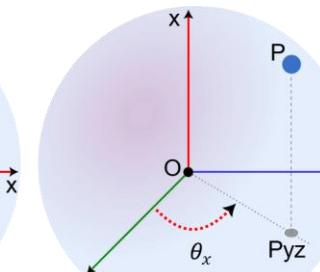
Iteration (i)



(a)

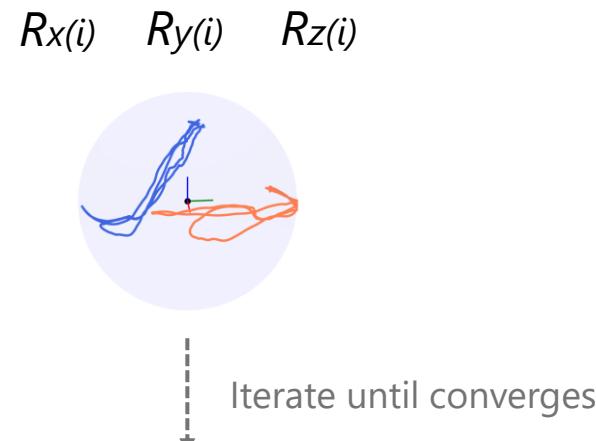


(b)



(c)

Axis Direction Angles



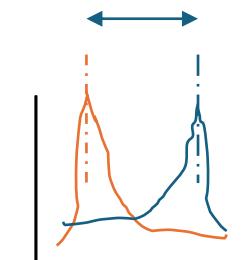
x-hist

y-hist

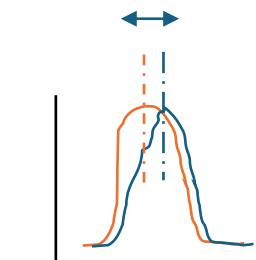


z-hist

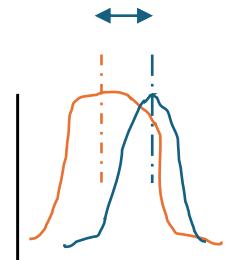
$R_x(i)$



$R_y(i)$



$R_z(i)$



Horizontal Bins (360)
Vertical Bins (180)

Methods

Algorithm 3: SPMC+ FRS

Algorithm 1: SPMC

- Mean direction is sensitive to when noise and outliers are significant

Algorithm 2: FRS

- Sensitive to initialization

Algorithm 3: SPMC +FRS

- SPMC provides a good initialization. FRS converges even faster

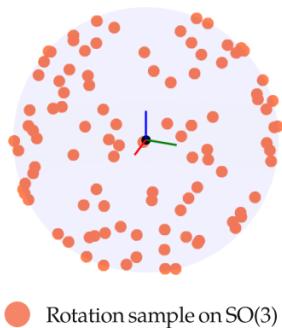
Novel Synthetic Dataset

Robust Vector Alignment Dataset

5 Random patterns (A1,..., A5)

7 Levels of Noise and Outliers (B1,..,B7)

100 Random Rotation



A5B1: noise $\sigma=0.0$, outliers 0%

A5B2: noise $\sigma=0.01$, outliers 10%

A5B3: noise $\sigma=0.01$, outliers 50%

A5B4: noise $\sigma=0.01$, outliers 90%

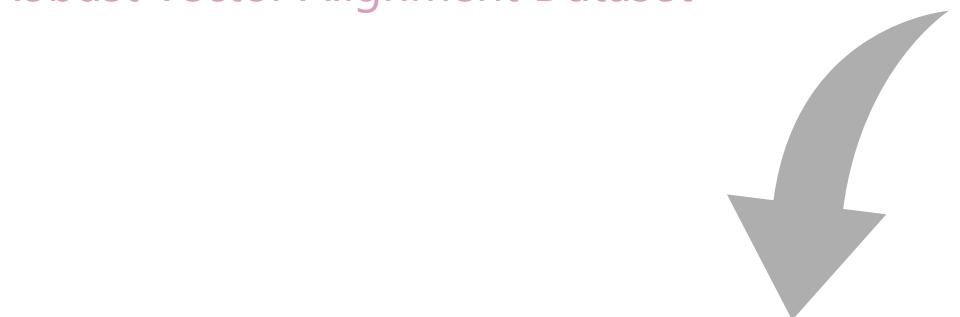
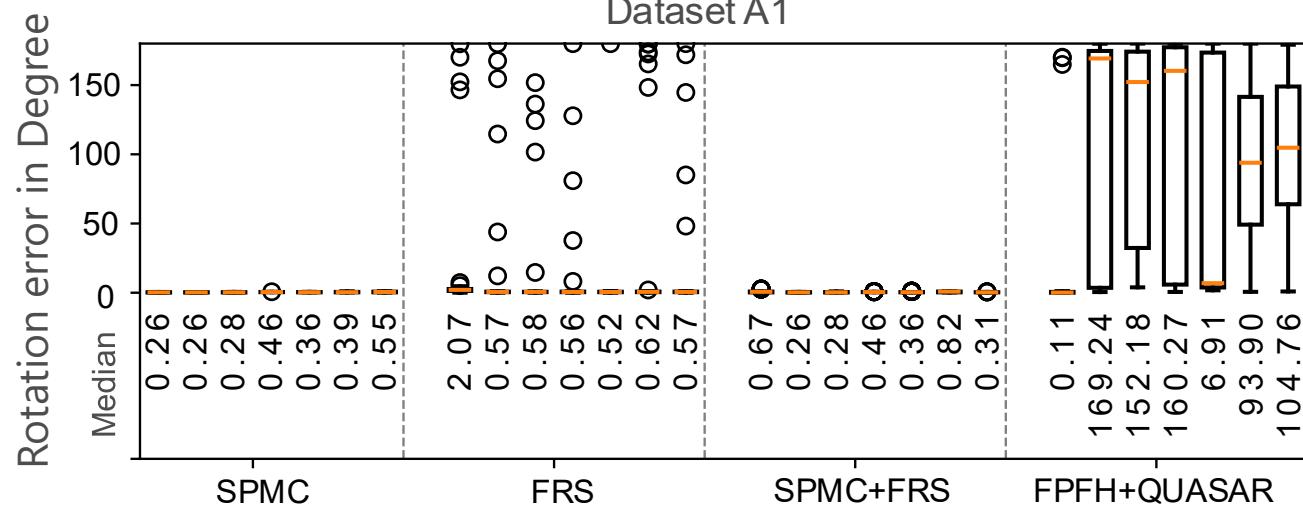
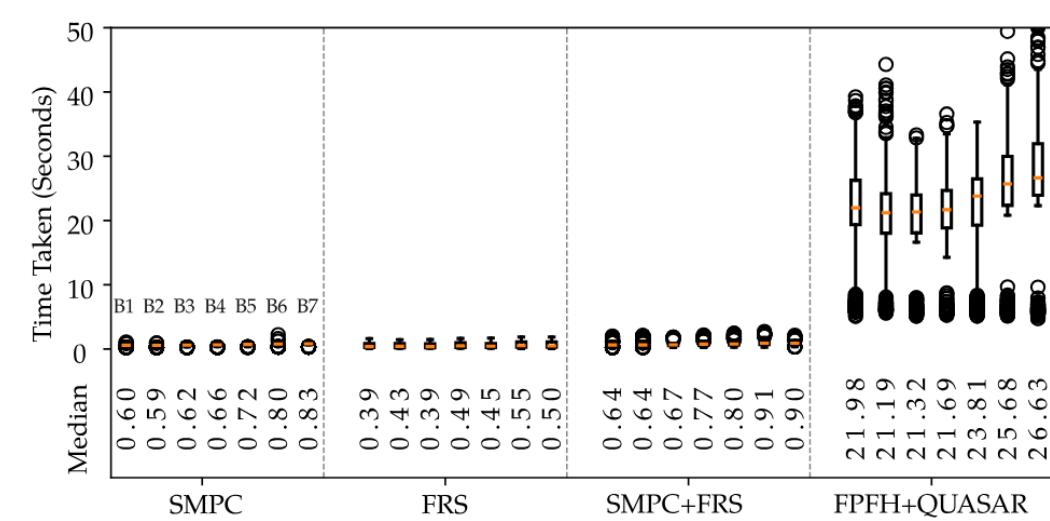
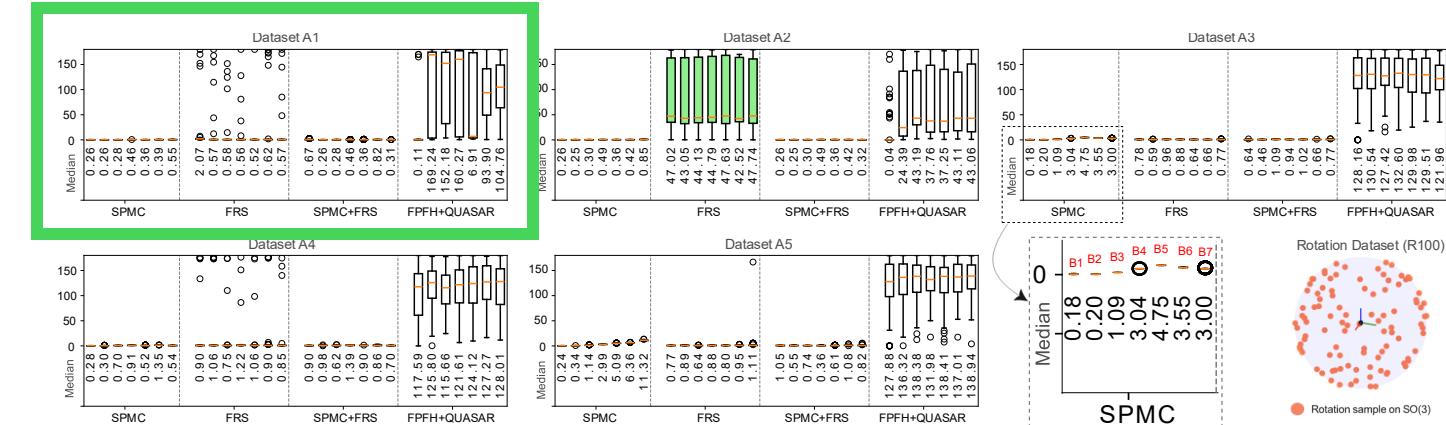
A5B5: noise $\sigma=0.1$, outliers 10%

A5B6: noise $\sigma=0.1$, outliers 50%

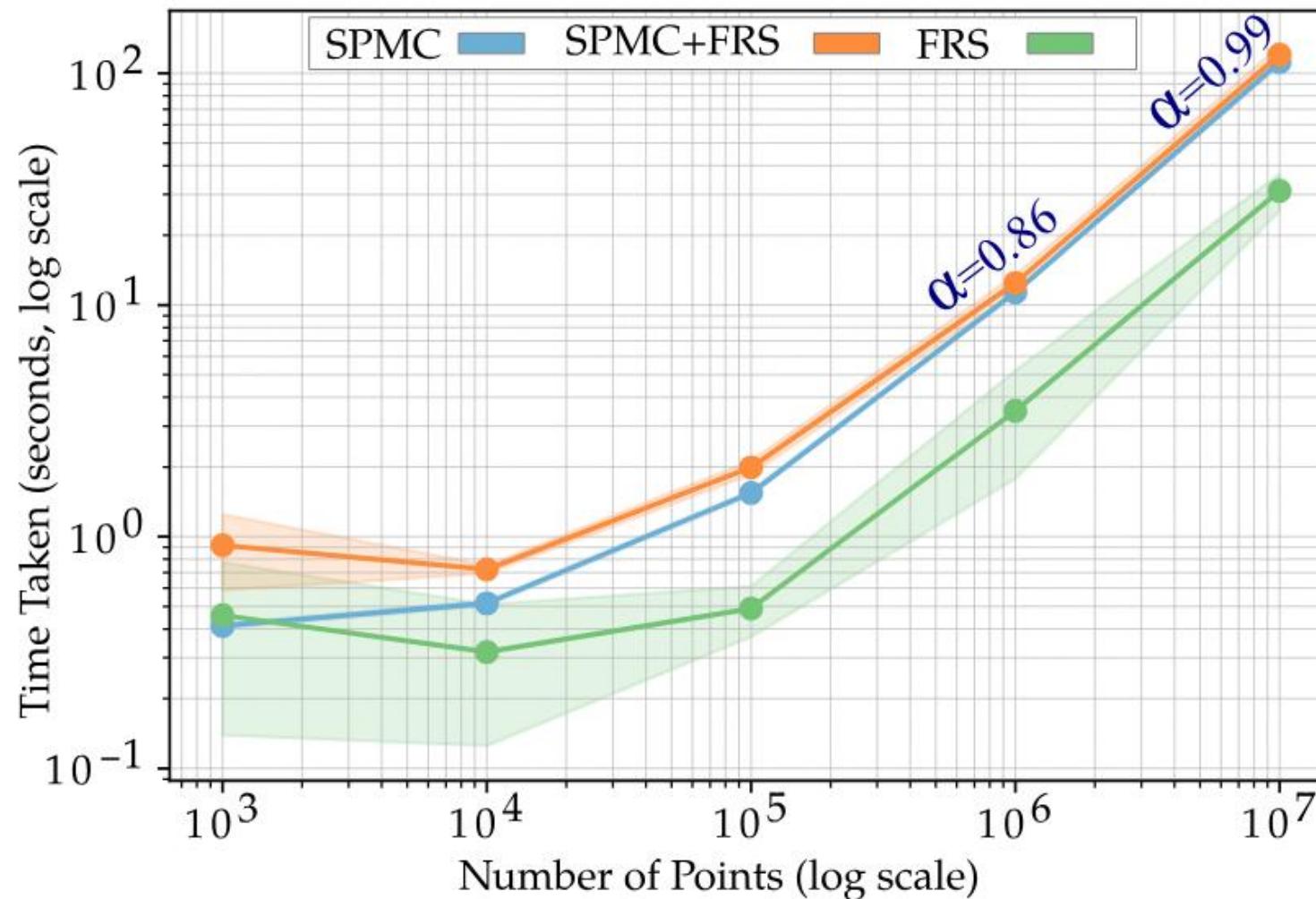
A5B7: noise $\sigma=0.1$, outliers 90%

Results

Robust Vector Alignment Dataset



Time Complexity: $\sim O(N)$



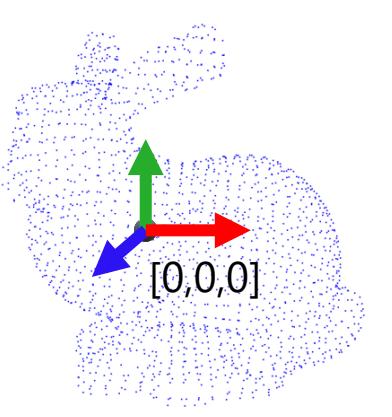
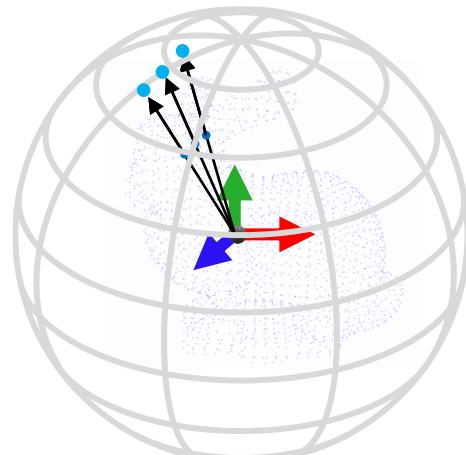
Application 1: Point Cloud Registration

Rotational alignment (our method)

Translation estimation [adaptive voting (e.g TEASER) or centroid shift (for complete to complete)]

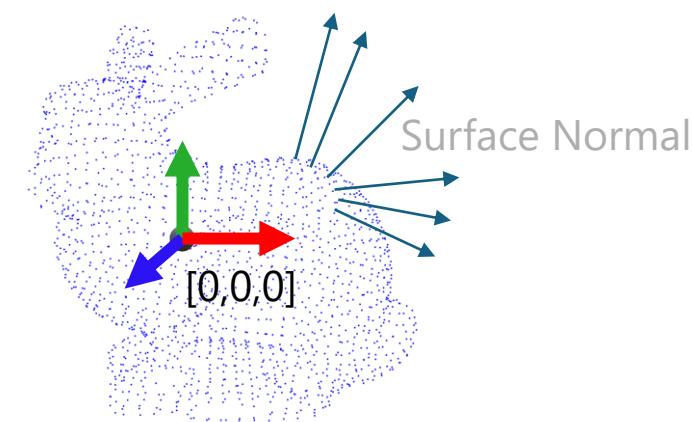
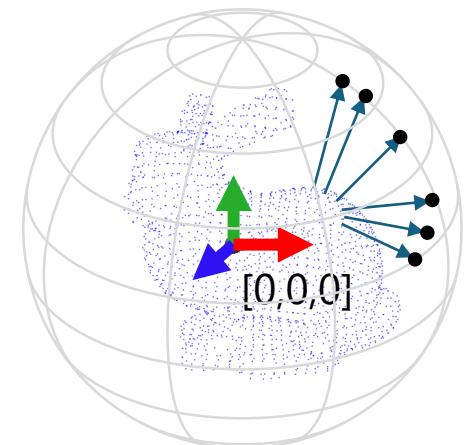
Spherical Representation of Point Cloud

1) CASE (Centroid Aware Spherical Embedding)



Applicable if we know the complete geometry of the objects (complete to complete registration)

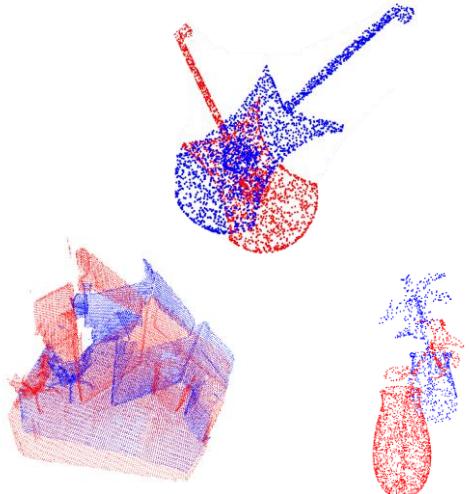
2) EGI (Extended Gaussian Image)



Can generate spherical signal for partial point cloud

Application 1: Point Cloud Registration

Point Clouds



Spherical Embedding

CASE

(Centroid Aware Spherical Embedding)

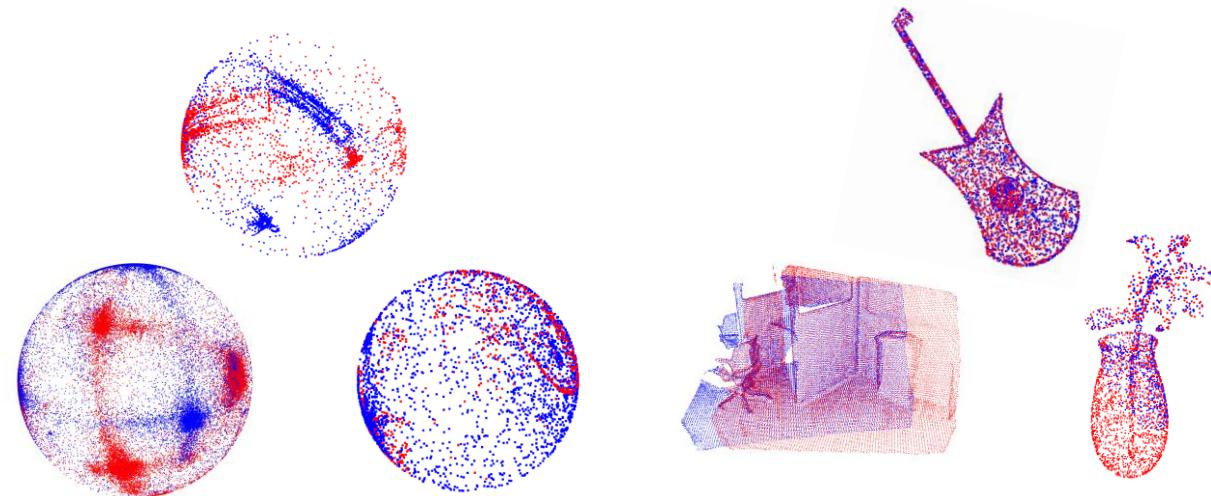
Complete to Complete

EGI

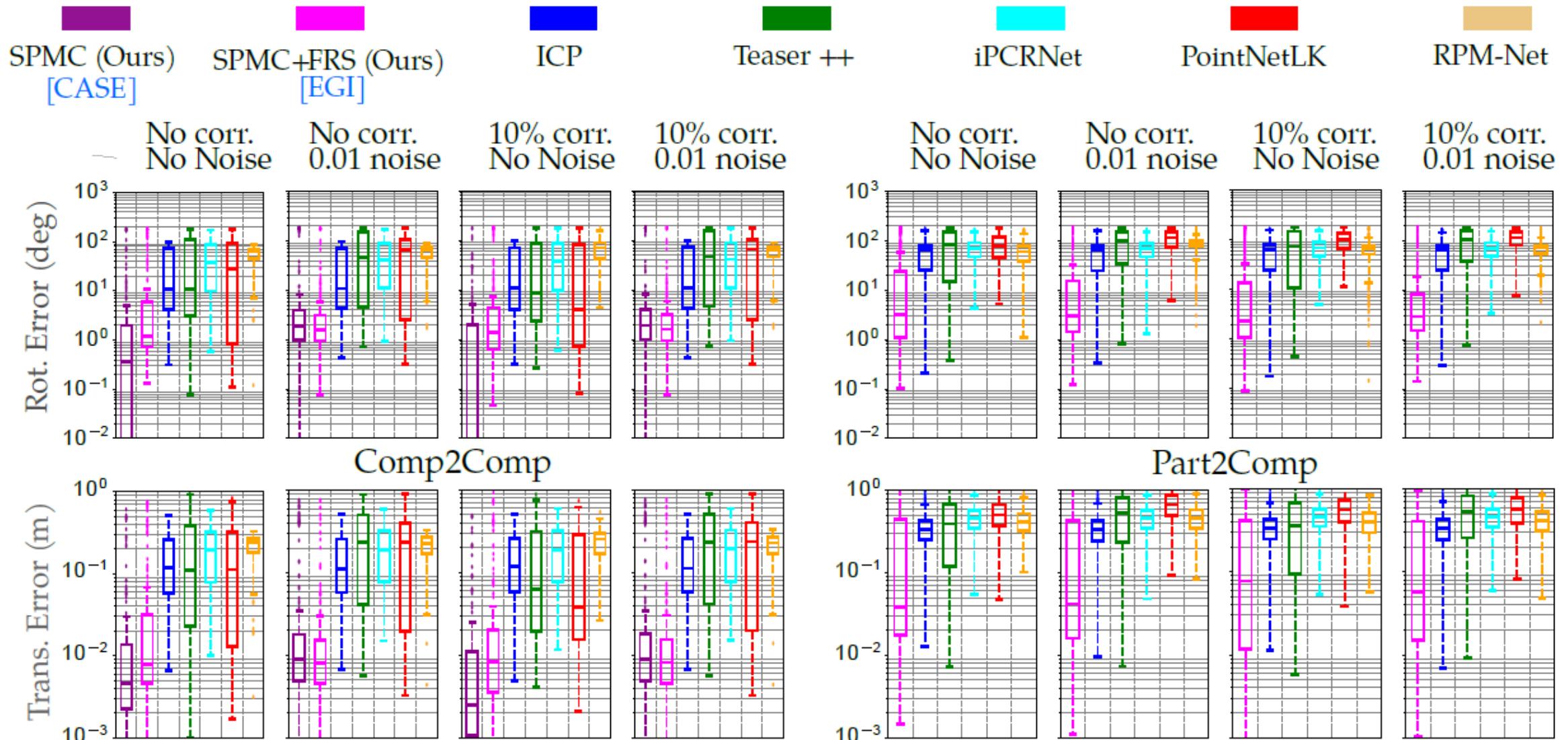
(Extended Gaussian Image)

Partial to Partial,
Partial to Complete

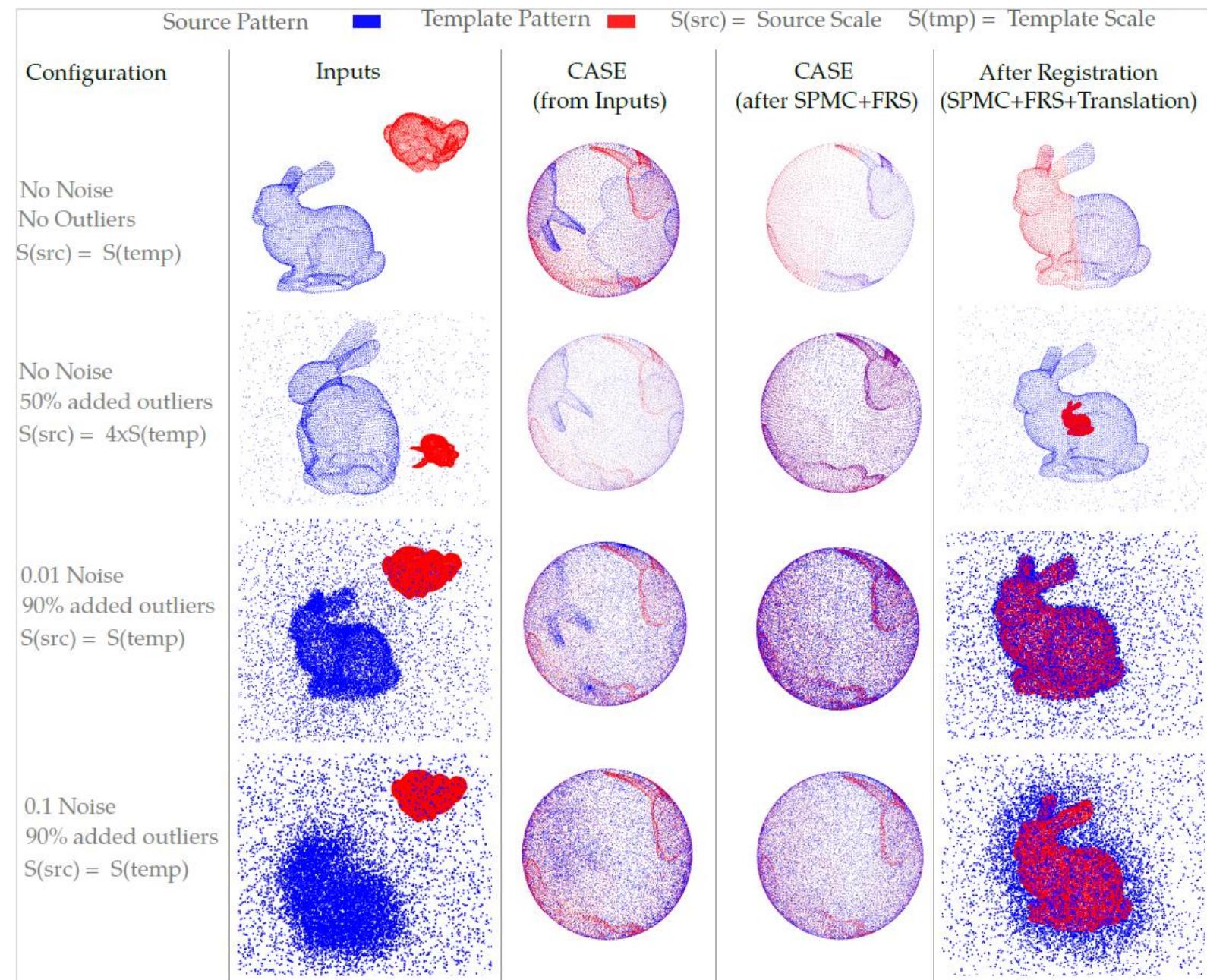
After Registration



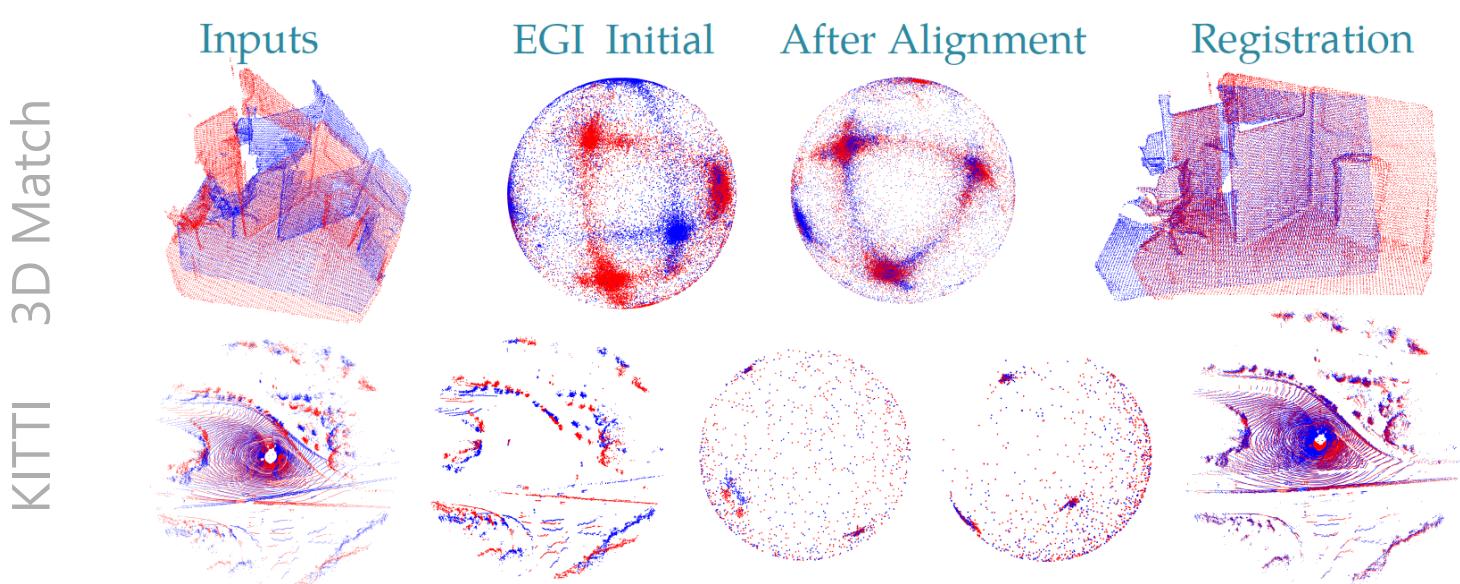
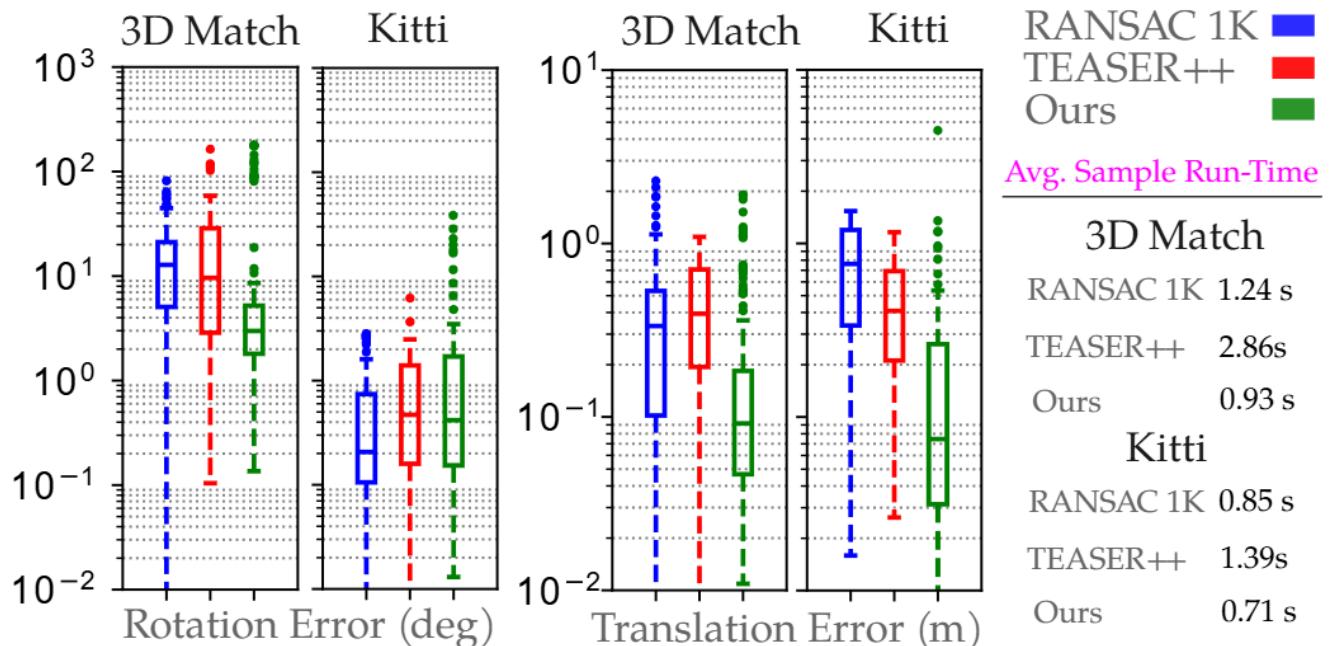
Quantitative Evaluation: ModelNet40



Qualitative Evaluation: Bunny Dataset (complete to complete)



Quantitative Evaluation: KITTI, 3D Match

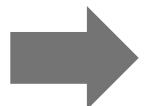
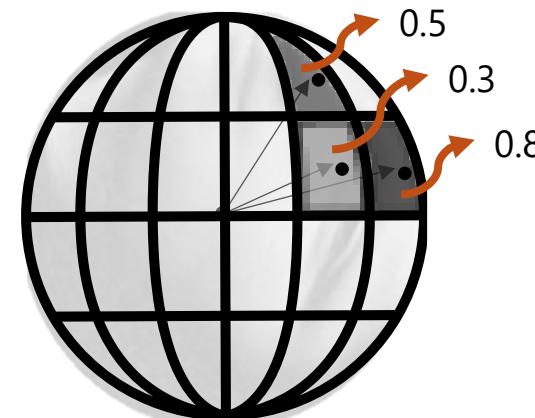


Application 2: Spherical Image Registration

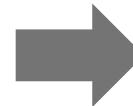
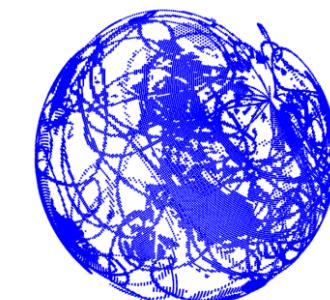
Point Cloud Representation of Spherical Image

Target Spherical Image

Source Spherical Image
(Rotated + Cluttered)

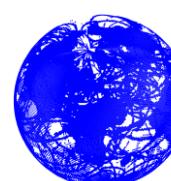


SphImg2SphPoints

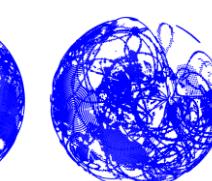


Effect of different thresholding value

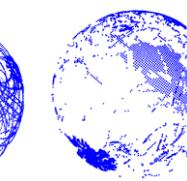
$\text{I} = 0.1$



$\text{I} = 0.2$



$\text{I} = 0.3$



$\text{I} = 0.5$

Qualitative Evaluation: Map data

Template Spherical Image
& 2D Projection

Rotated
Source Sph. Image

Source 2D Projection

2D projection after registration

Rotated + Noisy
Source Sph. image

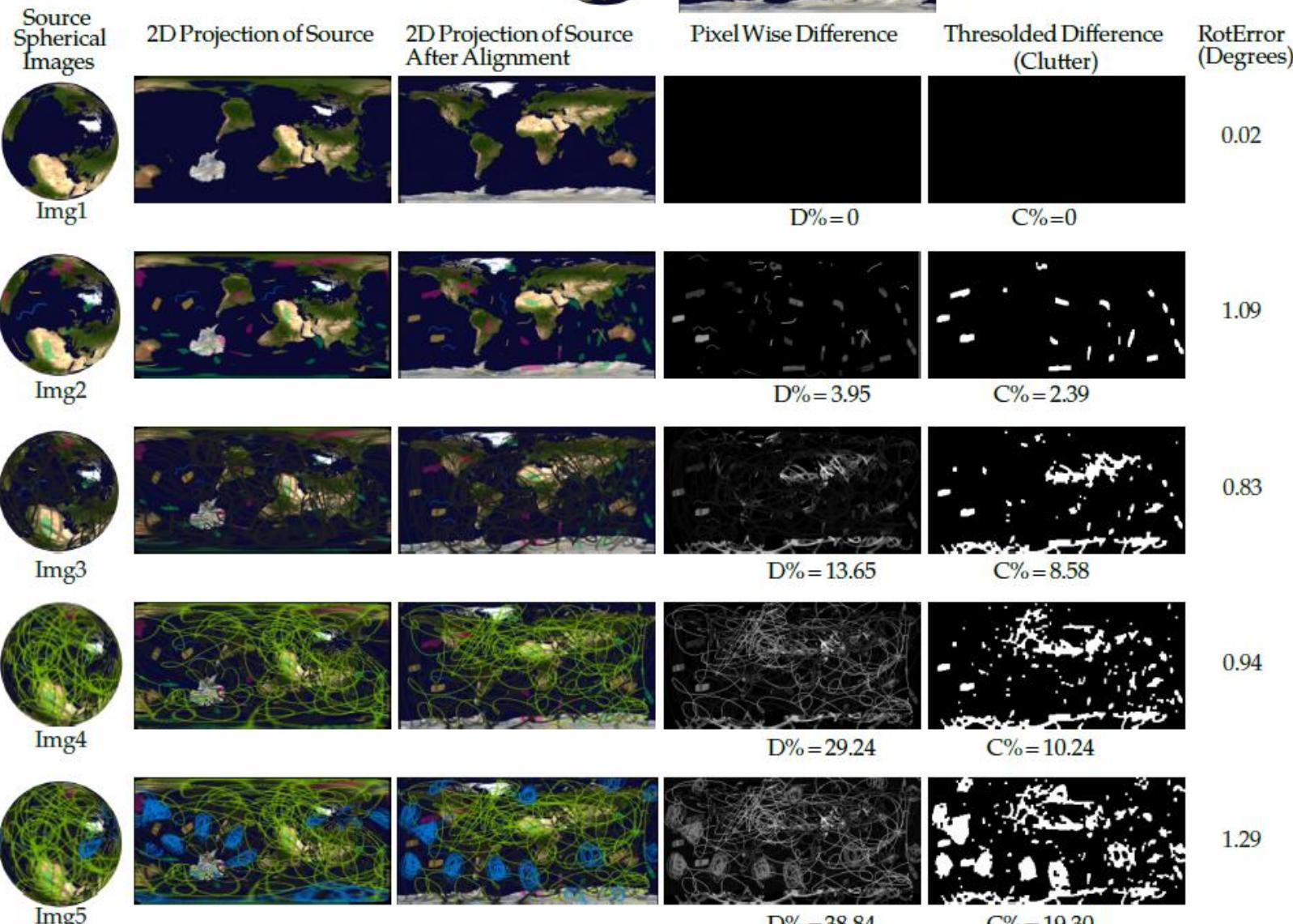
Evaluation: Map Data

Our Method

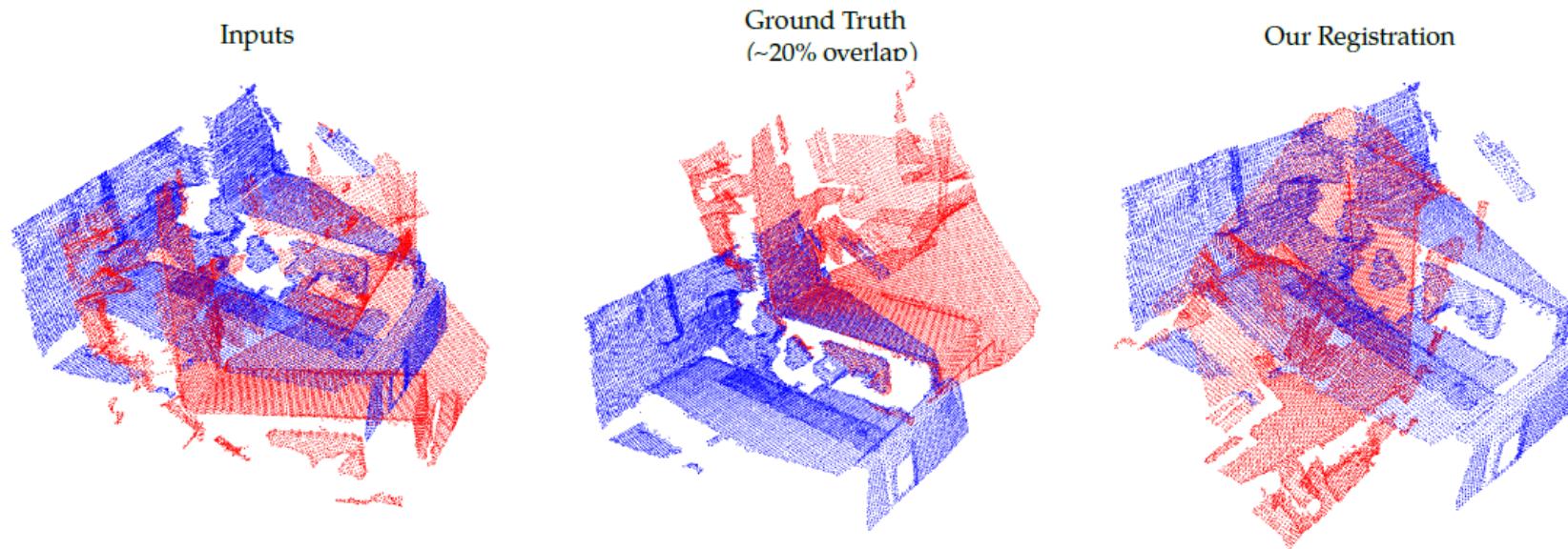
Clutter = 19%

	Rotation (deg)	Error (deg)
Alpha	55.27	0.20
Beta	12.11	0.21
Gamma	11.02	1.26

Template Spherical Image
& 2D Projection



Limitation and Future Work



Point cloud registration depends on the quality of spherical embedding.

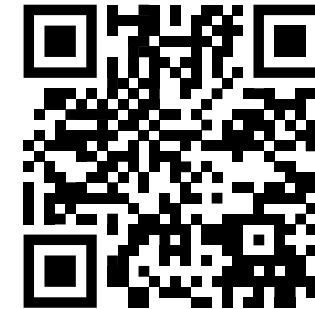
For partial clouds, rotation-invariant embeddings like EGI can be challenging, often requiring >65% overlap for partial-to-partial registration.

A future direction of this work is to improve rotation-invariant spherical embeddings for partial point clouds

Summary

- We introduce two novel algorithms for spherical point- pattern registration, along with a third hybrid algorithm that combines the two.
- Our algorithm runs $\sim O(n)$ time complexity.
- We demonstrate the adaptability of our algorithms for point cloud registration. Additionally, we present the Centroid Aware Spherical Embedding (CASE) method, to convert a point cloud into spherical pattern.
- We propose a novel approach for converting spherical images to spherical point clouds, enabling tasks such as rotation estimation between two spherical images.
- We present the publicly available “Robust Vector Alignment Dataset,” this can be used for evaluation of algorithms vector set alignment, spherical pattern alignment, Wahaab problem etc.

Thanks for watching



Webpage

*Dataset
& Code*