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Video Moment Retrieval

Segment of user Interest



How to Represent a Query?

“A man positions himself beneath the ball,
leaping into the air, bending his knees and

arching his back. As he flips backward, he
connects with the ball using his foot.”

Option 1: Text Query

Segment of user Interest



How to Represent a Query?

“A man positions himself beneath the ball,
leaping into the air, bending his knees and

arching his back. As he flips backward, he
connects with the ball using his foot.”

Option 1: Text Query

Option 2: Video Query

Segment of user Interest



Advantage of Video Query

Query Video

W § § § § § § §F B/ W W F W W BN R N W W E N EEEE EE BN BB
= ¥ | L

il [ 3 ."‘ \' | i . | Fl’ame tO
= Frame
Alignment

Target Video

Enables fine-grain alignment and correlation Learning
Capture rich spatial-temporal cues directly from video query



Proposed Method: MATR (Moment Alignment TRansformer)
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MATR: Video Feature Extraction

Target Video
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MATR: Fre-fusion Alignment

Target Video
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MATR: Fre-fusion Alignment

Target Video
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MATR: Post-fusion Alignment
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MATR: Passing Aligned Target Feature to Decoder

Target Video
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MATR: Combining Query fused and Query aligned
representations of target Video
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MATR: Predicting moments using heads on combined target
representation

Target Video
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Pre-training: How to better initialize MATR?
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Competitive Approaches

Video to Video VMR Methods \

/ Text-VMR Methods \ /
Moment-DETR QD-DETR

QLei et al., NeurIPS’21;Moon et al., CVPR’23]/

GDP

sction proposals

T ' 5

FFI_ SRM
k[Chen et al., AAAI’20;Huo et al., TMM 23] /

e

/ Vision Language Models

[ P T
u
me-aware Frame Encod
g
=
ETI TN
, g — Ao
T @\ St Actantion
S

TlmeChat

\_ [Ren et al., CVPR 2023]

~

/

15



Results: Comparison with Text-VMR Methods

ActivityNet-VRL: MATR vs Text-VMR Methods
(Finetuned+V)
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Performance Score

Results: Comparison with Video-to-Video Methods
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Results: Comparison with Vision-Language Models

ActivityNet-VRL: MATR vs Vision-Language Models
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Ablations: Pre/Post Fusion Alignment

Performance Score

ActivityNet-VRL: Ablation Study
Dual-Stage Alignment Components
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Advantage of Pre-training

ActivityNet-VRL
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Qualitative Results (1/2)

THEEVENING SUN

Query Video Target Video
Ground truth: [2.0, 12.7], Prediction: [1.7, 12.7]


https://docs.google.com/file/d/1xz2SJK3-ULp6NxgMp0g57wkLRmy0zu11/preview
https://docs.google.com/file/d/1MMK04rwL68rUjQSlG9u-Xp47QEOOCe_P/preview

Qualitative Results (2/2)

Query Video Target Video

Ground truth: [13.3, 25.6], Prediction: [13.2,25.8].


https://docs.google.com/file/d/1bPh04IEsZMo7ilMSAJcbWC5X3zwZ3Wdl/preview
https://docs.google.com/file/d/1XmiK4uxkMyxQlTCHg9W3ixS9ZoBHYOGC/preview

Conclusion

e MATR advances Video to Video moment retrieval via:

® Dual-stage alignment within transformer
e Self-supervised pre-training

https://qithub.com/vI2a/MATR

e Strong performance across benchmarks
e Future Directions

® Multi-Moment Extension

® Multimodal Queries (Video + Text)

Microsoft



https://github.com/vl2g/MATR

