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OOD Detection "IV
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Score function

¢ ID (in-distribution) inputs belong to the training distribution.

¢ OOD (out-of-distribution) inputs deviate from the predefined class taxonomy [1].
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OOD input

Raw activations Shaped activations

Activation Shaping Distance-based

¢ Activation shaping methods prune or scale the activation channels [1].

¢ Distance-based methods utilize the position of the activations [2, 3].
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Motivation
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Activation shaping

__,

Raw activations Shaped activations
¢ OOD inputs can produce activations ¢ The insignificant directions can interfere with
—>
that highly align with the class vectors. the decisive information on activations.

¢ Insignificant directions can be

useful for OOD detection. linear classification head (penultimate later)

¢ To identity the insignificant directions, we

examine the right singular vectors of the v — activation
logits — weight matrix

weight matrix.
Activation Subspaces for Out-of-Distribution Detection 4



HONOLULU

ILLY HAWAI]

Activation Subspaces
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¢ Decisive Subspace: Directions corresponding to high singular values. 5 _ V\}Ta

¢ Contributes maximally to the final classitier output.

¢ Insignificant Subspace: Directions corresponding to low singular values.

¢ Contributes minimally to the final classifier output.
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Insignificant Subspace
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Key Observation

¢ The insignificant component yields powerful features, akin to a random neural network [1, 2], that is discriminative for OOD detection!

IR
¢ S: The average cosine similarity to nearest neighbors from the training data.
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Decisive Component

Decisive Subspace
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Key Observation

¢ Activation shaping methods profit from considering the decisive component, as the insignificant component can cause interference.

¢ S: The energy function [1] on logits from the shaped activation.
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Score of the insignificant component Score of the decisive component
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ActSub

¢ We utilize the discriminative information from both components to define our final score function ActSub.
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Model: ResNet-50 ID: ImageNet- 1K OOD: iNaturalist, SUN, Places, Textures

B CoRP[1] B DBD [2] SCALE [3] DDCS [4] ActSub
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¢ With the complementary effect of both subspaces, ActSub achieves SoTA results.

¢ Note: For distance-based methods CoRP [1] and fDBD [2], we consider the strongest reported variant with an activation shaping method.

Activation Subspaces for Out-of-Distribution Detection 9



HONOLULU

ILLY HAWAII

Conclusion

+ \We define two orthogonal subspaces of the activation space based on their contribution to the classifier output.

¢ The insignificant component yields powerful features untainted by the classitfication task, discriminative for OOD Detection.

—

¢ Selectively applying activation shaping to decisive component mitigates the channel-wise interference on activations.

¢ \We define ActSub by combining discriminative information from both subspaces.

' ¢ With the complementary effect of the subspaces, ActSub achieves SoTA results.

Average
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