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Background and Significance

Owing to scarce labeled data and infrequent usage, finetuning Foundational 

Segmentation Model for atypical domain is time-consuming and ineffective

It’s significant to develop a domain adaptation strategy to facilitate Foundational 

Segmentation Model’s performance in all domains without finetuning

Foundational Segmentation Model will be employed in various domain
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Dataset 

• Common Field: NJU2k, VT1k

• Thermal Infrared: VT1k-T

• Depth Image: NJU2k-Depth

• Camouflage Objects: CAMO, COD10k, NC4k

• Endoscopic Image: Kvasir-SEG

• Ultrasound Image: BUSI

• Industrial Data: KoletorSDDV2, MTSD
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Feasibility Certification
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Heterogeneous Searching Space

• Mainly use SOTA in certain field to 

become learning-based methods
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Heterogeneous Searching Space
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Paradigm 
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Paradigm 
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Paradigm 
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Paradigm 
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Paradigm 
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Paradigm 
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• During Validation Process: After 

finding augmented policy, using 

original images and augmented 

images as paired images to train a 

generator

• During Inferencing Process: 

Using Generative Model instead to 

accelerate augmenting process

Distillation 



13

Distillation 
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Main Result (5-shot) 
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Main Result (10-shot) 
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Qualitative Result

• For common fields, depth estimation helps a lot. (relative depth)

• Learning-based method brings higher upper limit for camouflage objects.
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Qualitative Result

• Normal surface estimation makes tumor and polyp more obvious in medical field.

• Rule-based method performs better in industrial detection by hiding unrelated part.
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Distillation Result

• Save a lot of time when countering time consuming methods 

(e.g. Normal Surface Estimation), while drops in performance.
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Ablation Study (Reward Design)

• It’s one-sided to judge an 

augmented policy’s 

performance on single image.

• Judge it on all of the training 

images will be time-consuming 

and easily lead to overfitting.

• Decide reward on residual or 

one with other two randomly 

picked samples will be effective.
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Ablation Study (Searching Space Design)
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Ablation Study (Searching Space Design)

• Radical methods will bring 

great enhancement in 

performance for some domains.

• Mild methods will improve on 

basis of radical methods

• Both two kinds of method is 

helpful to final result.
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Ablation Study (Random vs Reinforcement)

• Randomly selection will not 

always lead to better results 

when more steps are taken.

• Use reinforcement learning 

brings much more stable 

improvement and helps in 

faster convergence.
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