
Adapt Foundational Segmentation Model with Heterogeneous Searching Space

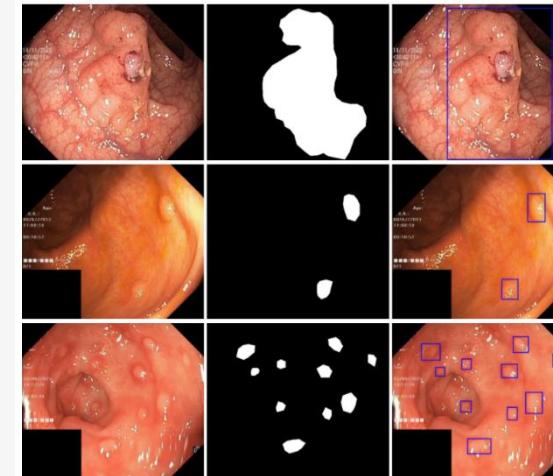
Li Yi, Jie Hu, Songan Zhang, GUANNAN JIANG

2025/10/3

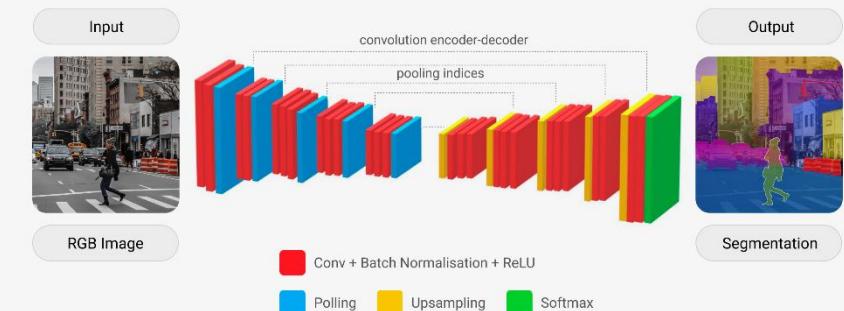
饮水思源 · 爱国荣校

Background and Significance

- | **Foundational Segmentation Model** will be employed in various domain
- | Owing to scarce labeled data and infrequent usage, **finetuning** Foundational Segmentation Model for atypical domain is **time-consuming and ineffective**
- | It's significant to develop **a domain adaptation strategy** to facilitate Foundational Segmentation Model's performance **in all domains** without finetuning



A CNN ARCHITECTURE FOR IMAGE SEGMENTATION.



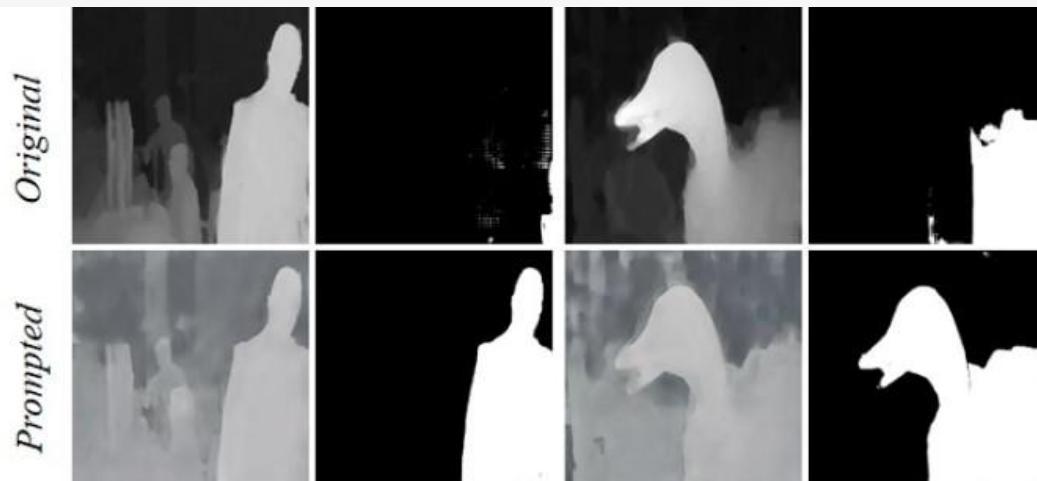
- **Common Field:** NJU2k, VT1k
- **Thermal Infrared:** VT1k-T
- **Depth Image:** NJU2k-Depth
- **Camouflage Objects:** CAMO, COD10k, NC4k
- **Endoscopic Image:** Kvasir-SEG
- **Ultrasound Image:** BUSI
- **Industrial Data:** KolektorSDDV2, MTSD

Feasibility Certification

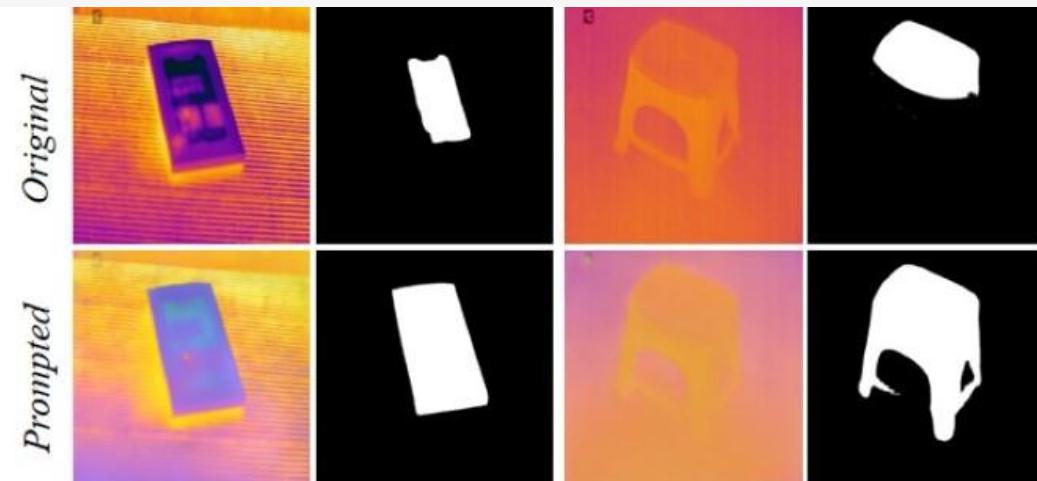
(a) Common Scenes: NJU2k, SAM-H, + 38.14 mIoU
Prompt: *DepthAnything*: -, *BrightnessUp*: 4, *ImageDemoireing*: 6



(b) Camouflage Images: CAMO, SAM-H, + 4.60 mIoU
Prompt: *SaturationDown*: 8, *BilateralFilter*: 9, *ContrastDown*: 3



(c) Depth Images: NJU2k, SAM-H, + 6.61 mIoU
Prompt: *ImageDemoireing*: -, *AlbedoMap*: -, *SaturationDown*: 7



(d) Thermal Images: VT1k, SAM-H, + 4.74 mIoU
Prompt: *AlbedoMap*: -, *BoxFilter*: 7, *ImageDemoireing*: -

Heterogeneous Searching Space

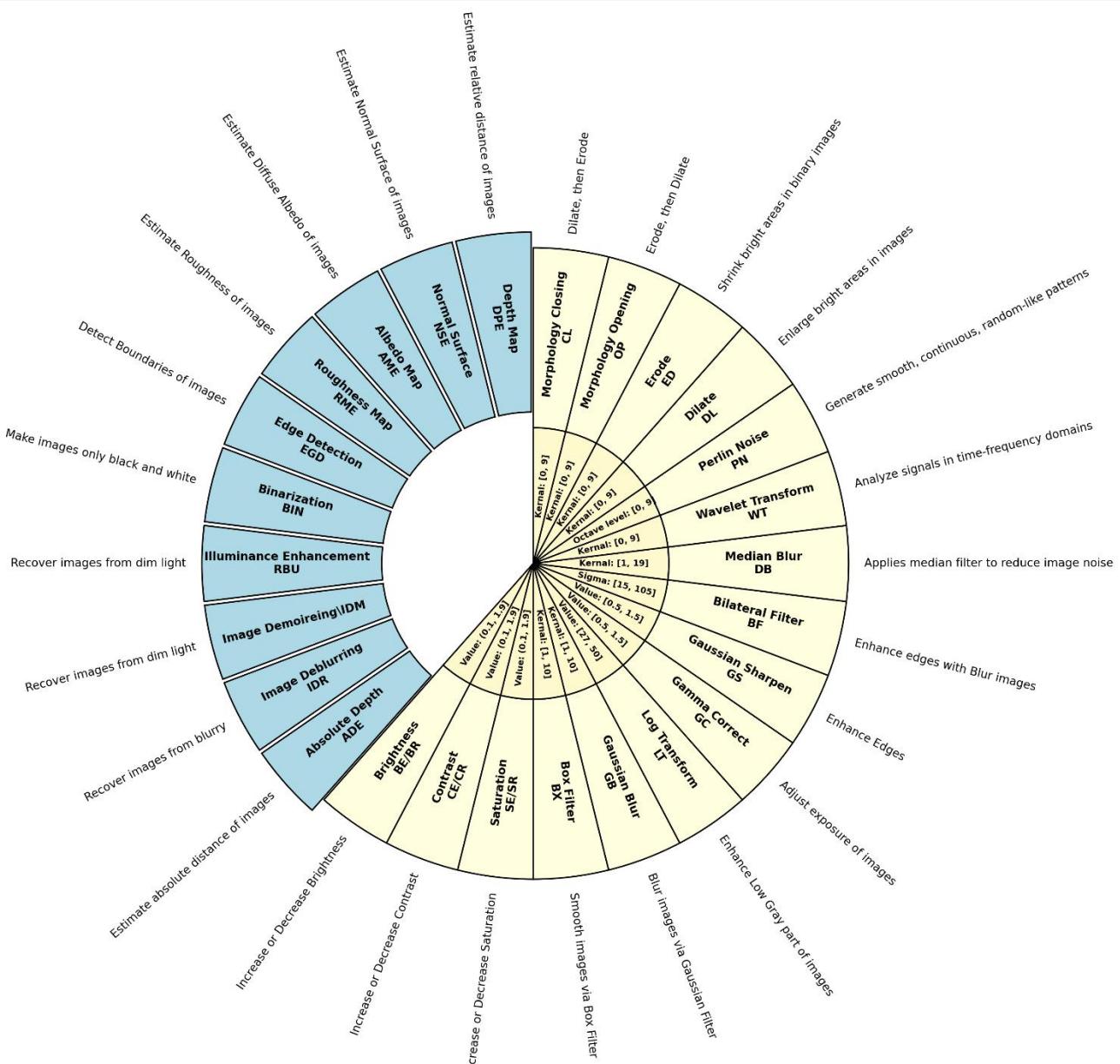
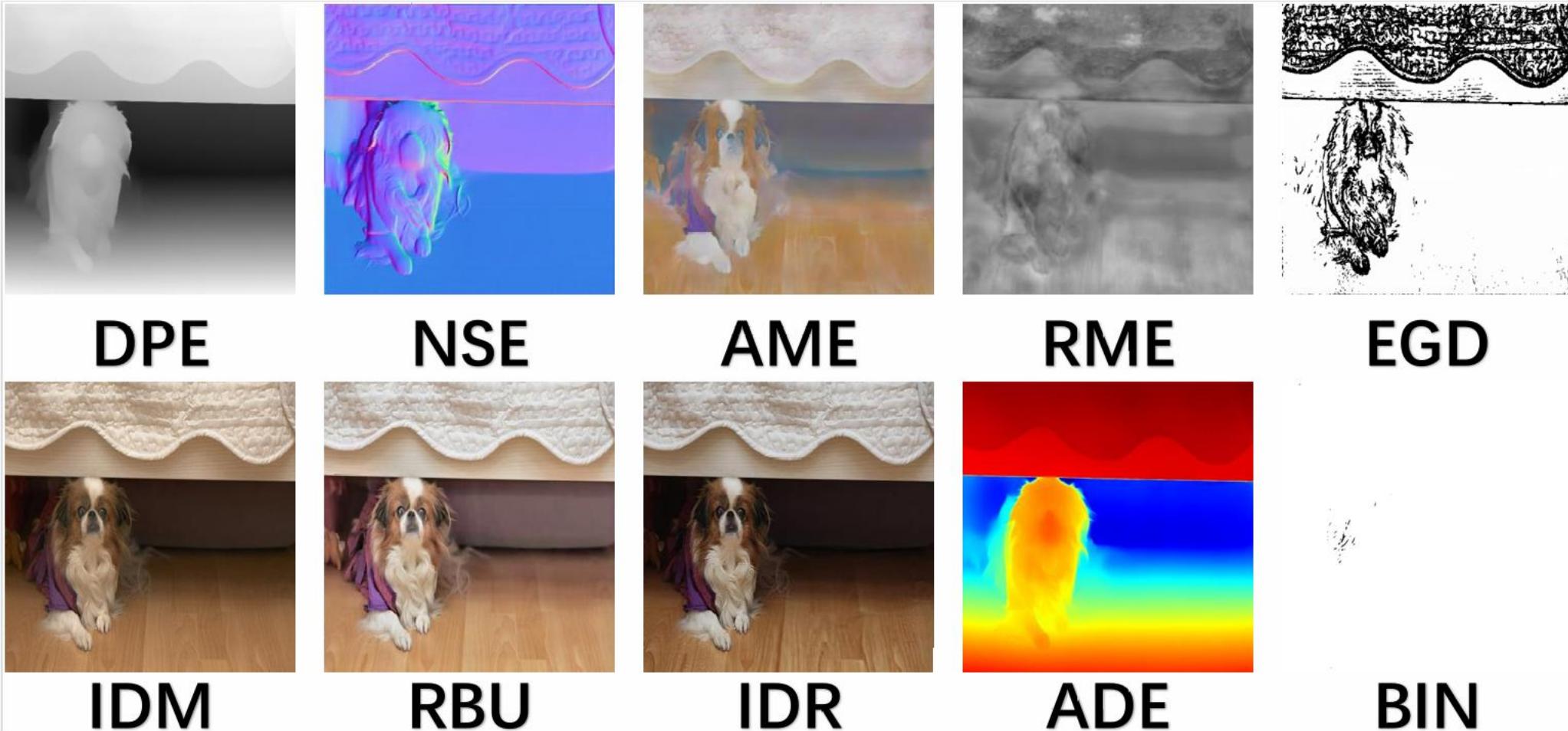


Image Processing		Description
Learning-based Methods	Depth Map Estimation (DPE) [7]	Estimate relative distance of images
	Normal Surface Estimation (NSE) [8]	Estimate Normal Surface of images
	Albedo Map Estimation (AME) [4]	Estimate Diffuse Albedo of images
	Roughness Map Estimation (RME) [4]	Estimate Roughness of images
	Edge Detection (EGD) [5]	Detect Boundaries of images
	Binarization (BIN) [6]	Make images only black and white
	Illuminance Enhancement (RBU) [2]	Recover images from dim light
	Image Demoiréing (IDM) [9]	Remove moiré pattern
	Image Deblurring (IDR) [3]	Recover images from blurry
	Absolute Depth Estimation (ADE) [1]	Estimate absolute distance of images
Rule-based Methods	Brightness (BE/BR)	Value: (0.1, 1.9]
	Contrast (CE/CR)	Value: (0.1, 1.9]
	Saturation (SE/SR)	Value: (0.1, 1.9]
	Box Filter (BX)	Kernal: [1, 10]
	Gaussian Blur (GB)	Kernal: [1, 10]
	Log Transform (LT)	Value: [27, 50]
	Gamma Correct (GC)	Value: [0.5, 1.5]
	Gaussian Sharpen (GS)	Value: [0.5, 1.5]
	Bilateral Filter (BF)	Sigma: [15, 105]
	Median Filter (DB)	Kernal: [1, 19]
Wavelet Transformation (WT)		LH: [0, 3] HH: [4, 6] HL: [7, 9]
Perlin Noise (PN)		Octave level: [0, 9]
Dilate (DL)		Kernal: [0, 9]
Erode (ED)		Kernal: [0, 9]
Morphology Opening (OP)		Kernal: [0, 9]
Morphology Closing (CL)		Kernal: [0, 9]

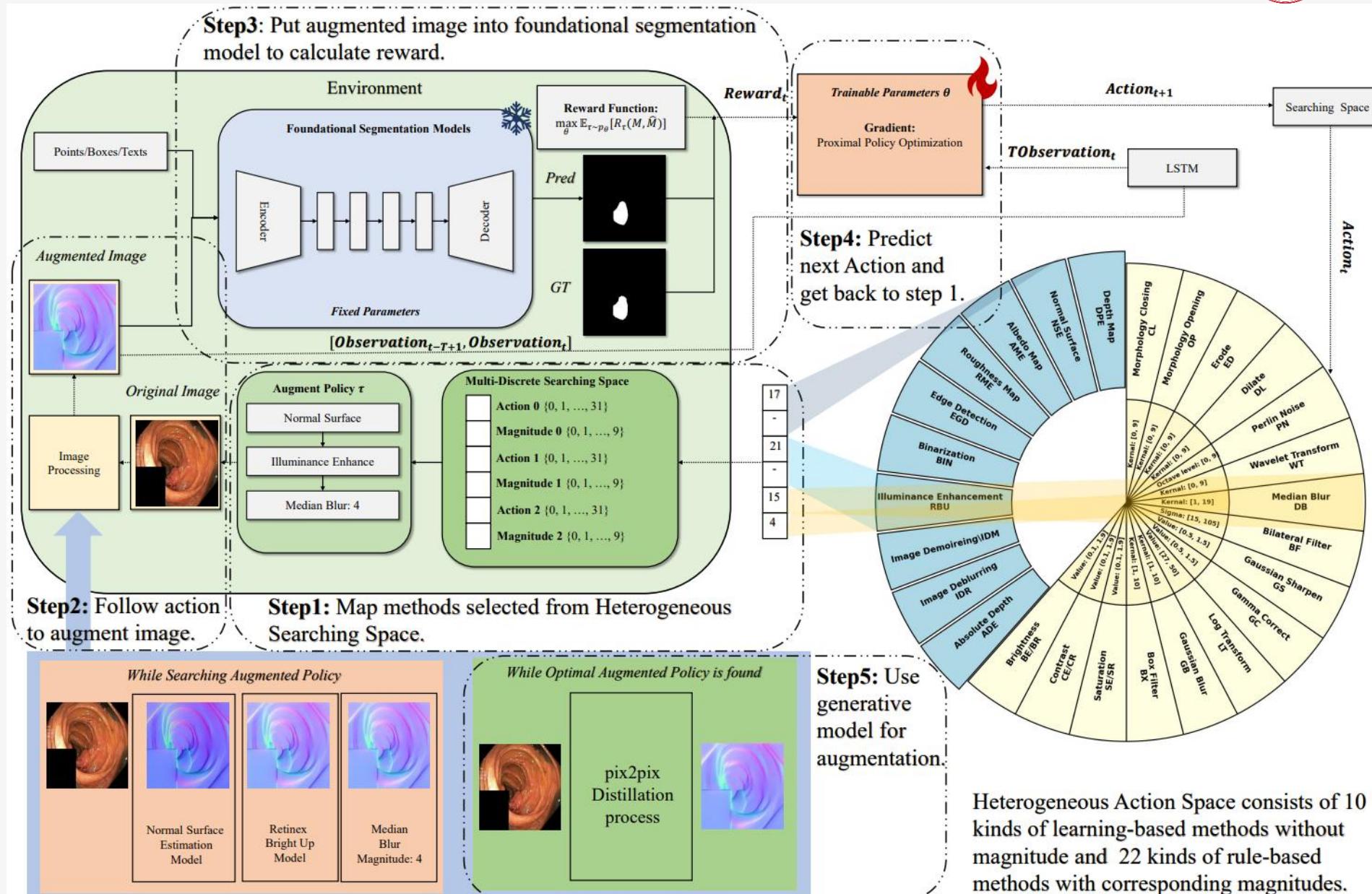
Table 1: This table shows the composition of heterogeneous Action Space, including 22 rule-based methods and 10 learning-based methods, and their corresponding abbreviation

- Mainly use SOTA in certain field to become learning-based methods

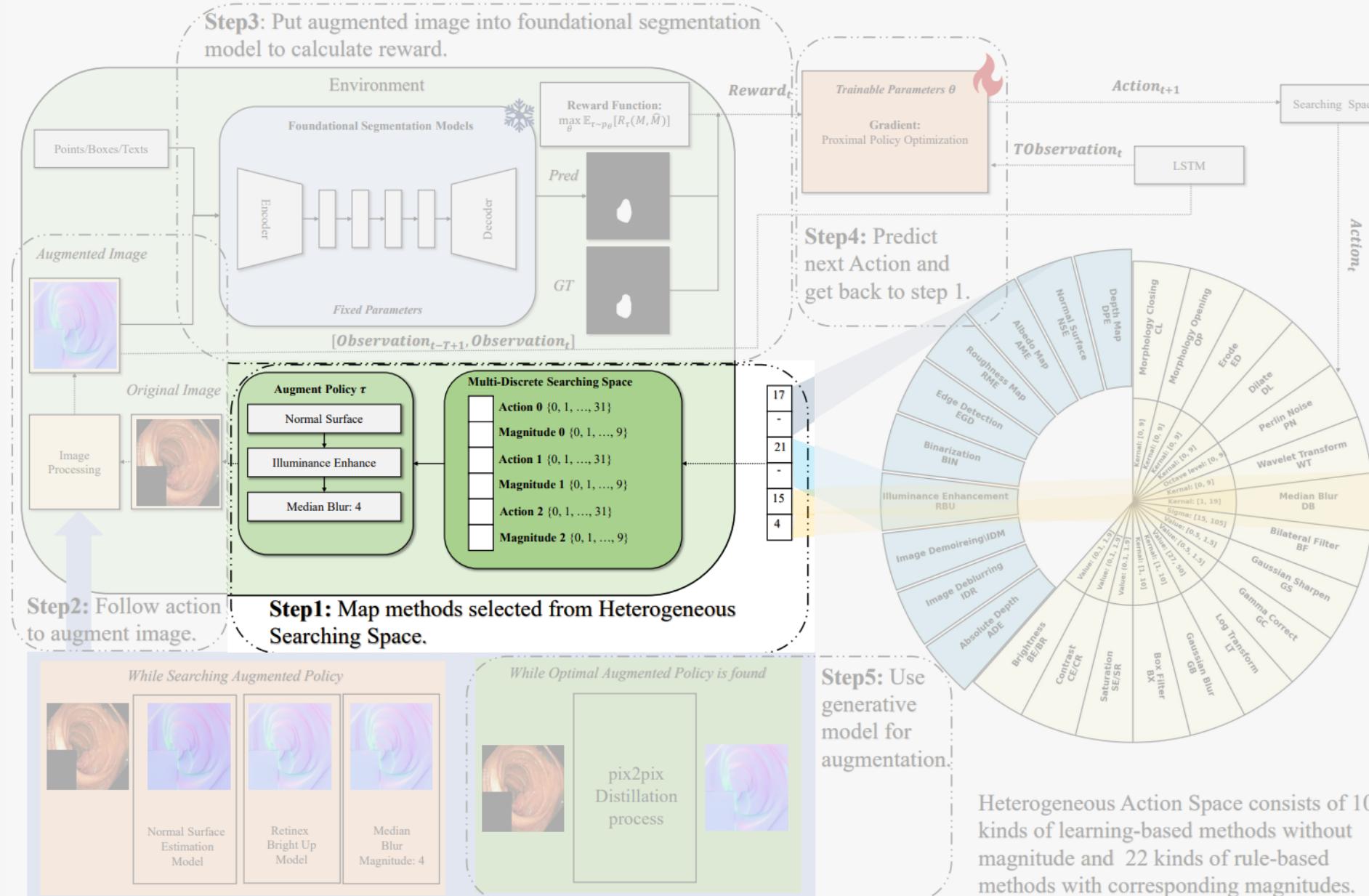
Heterogeneous Searching Space



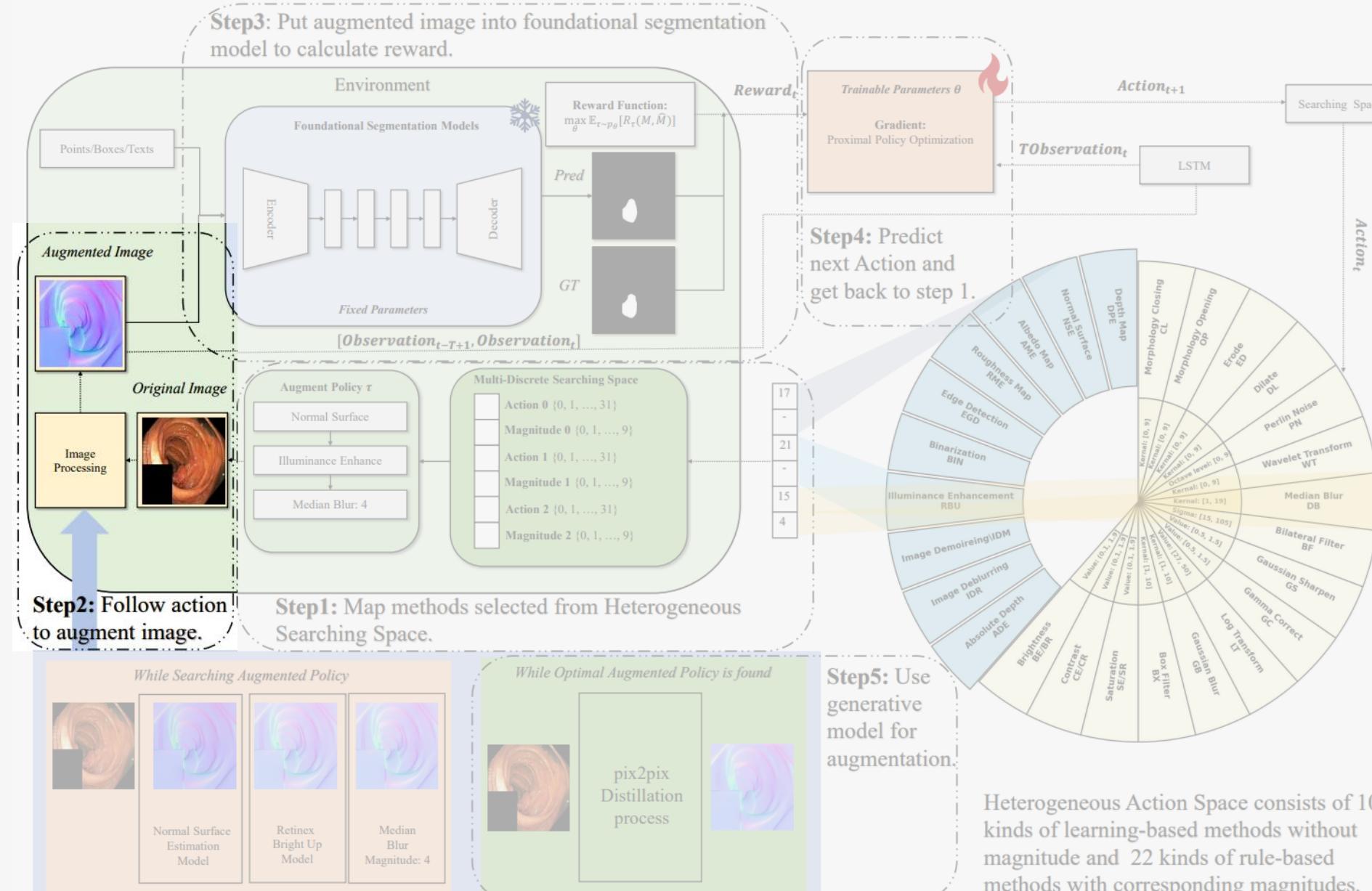
Paradigm



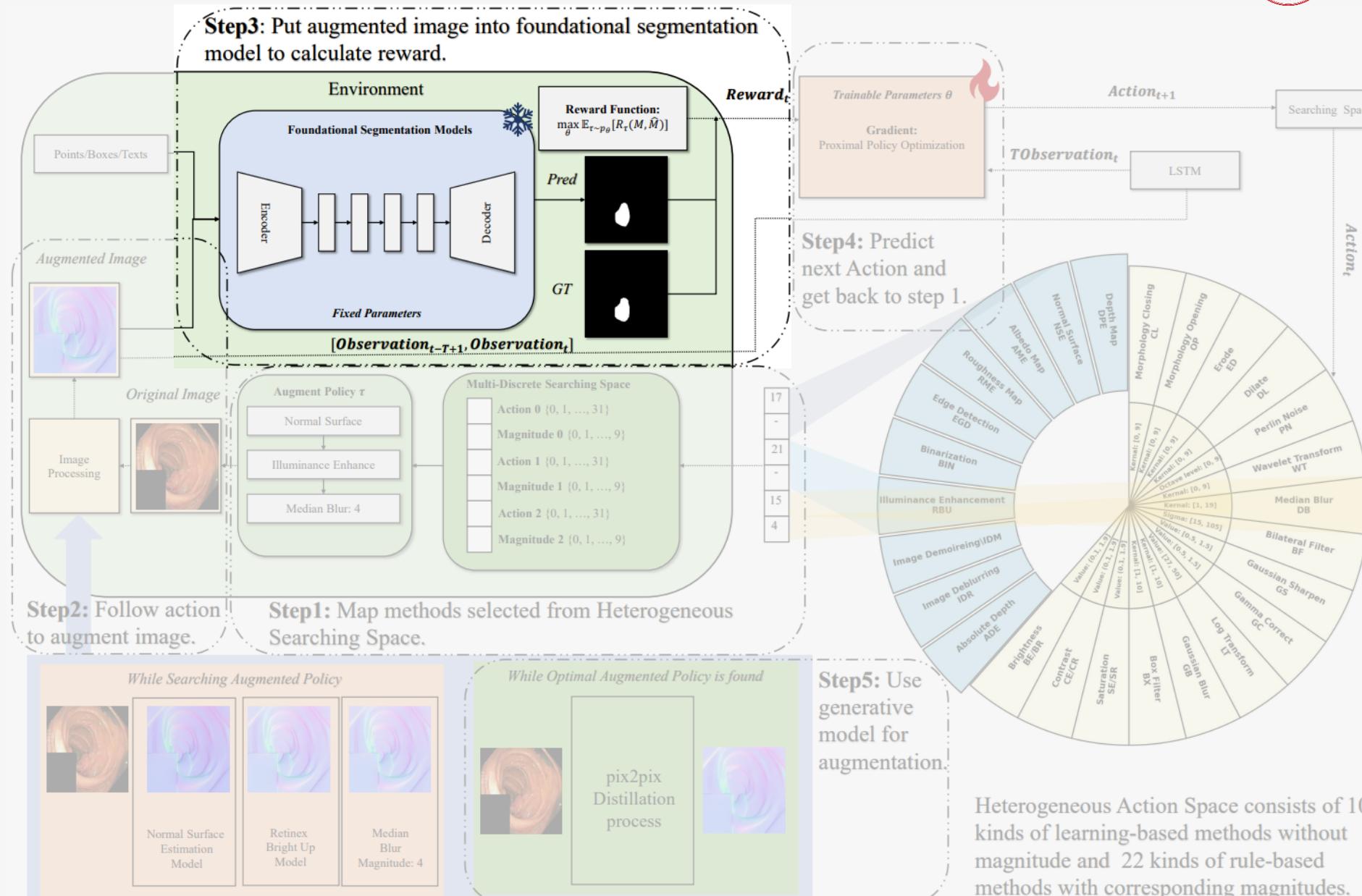
Paradigm



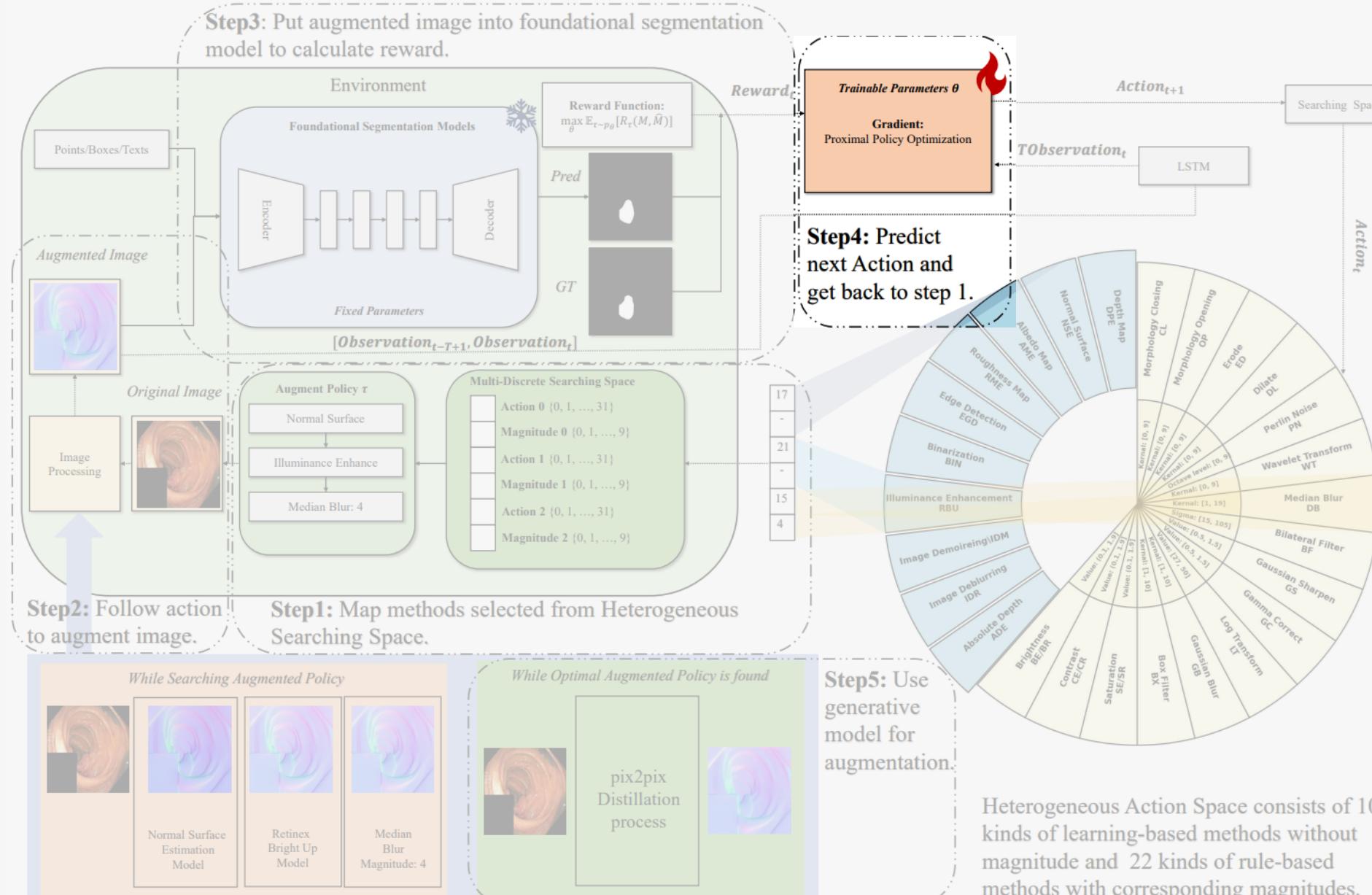
Paradigm



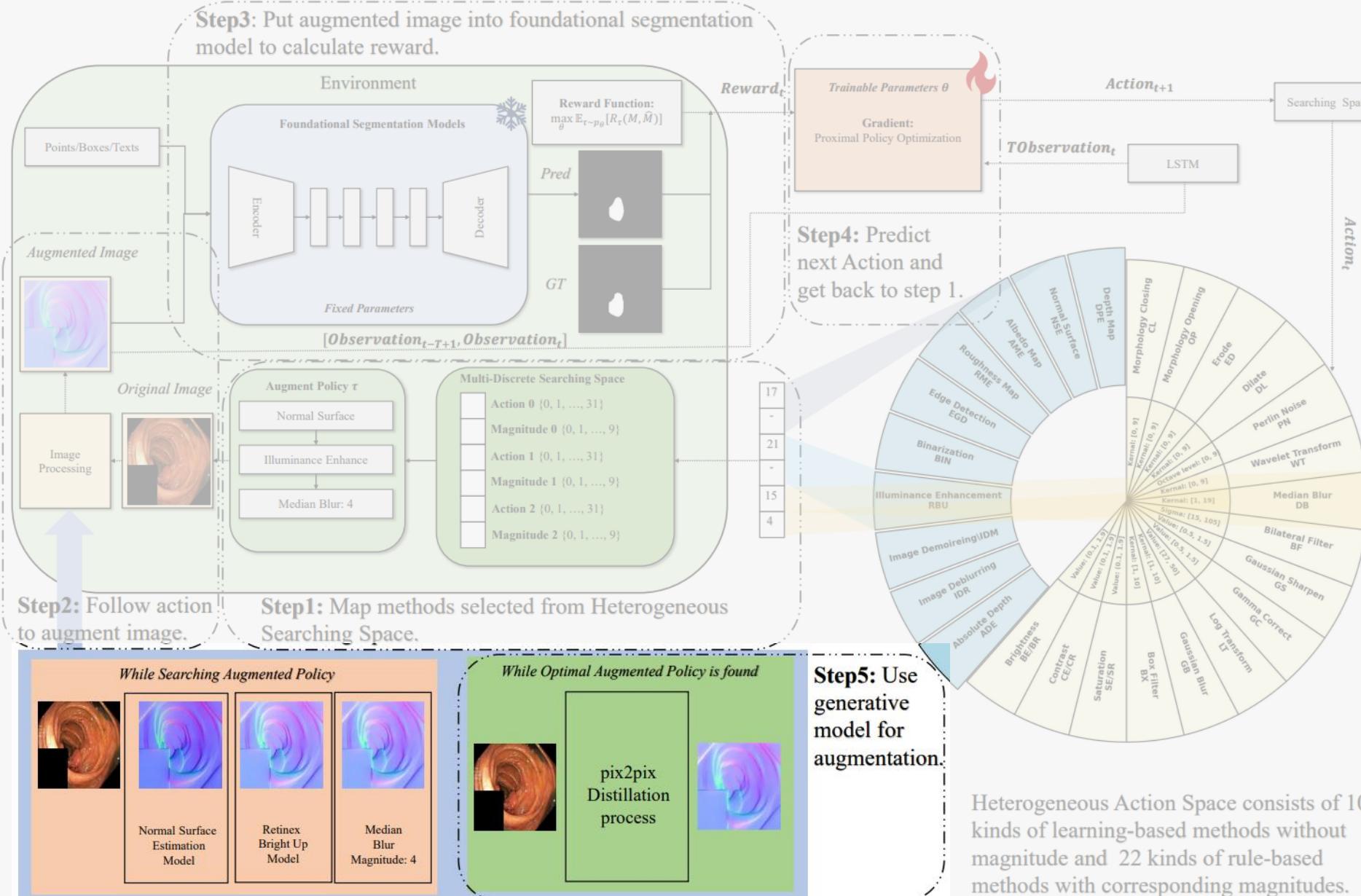
Paradigm



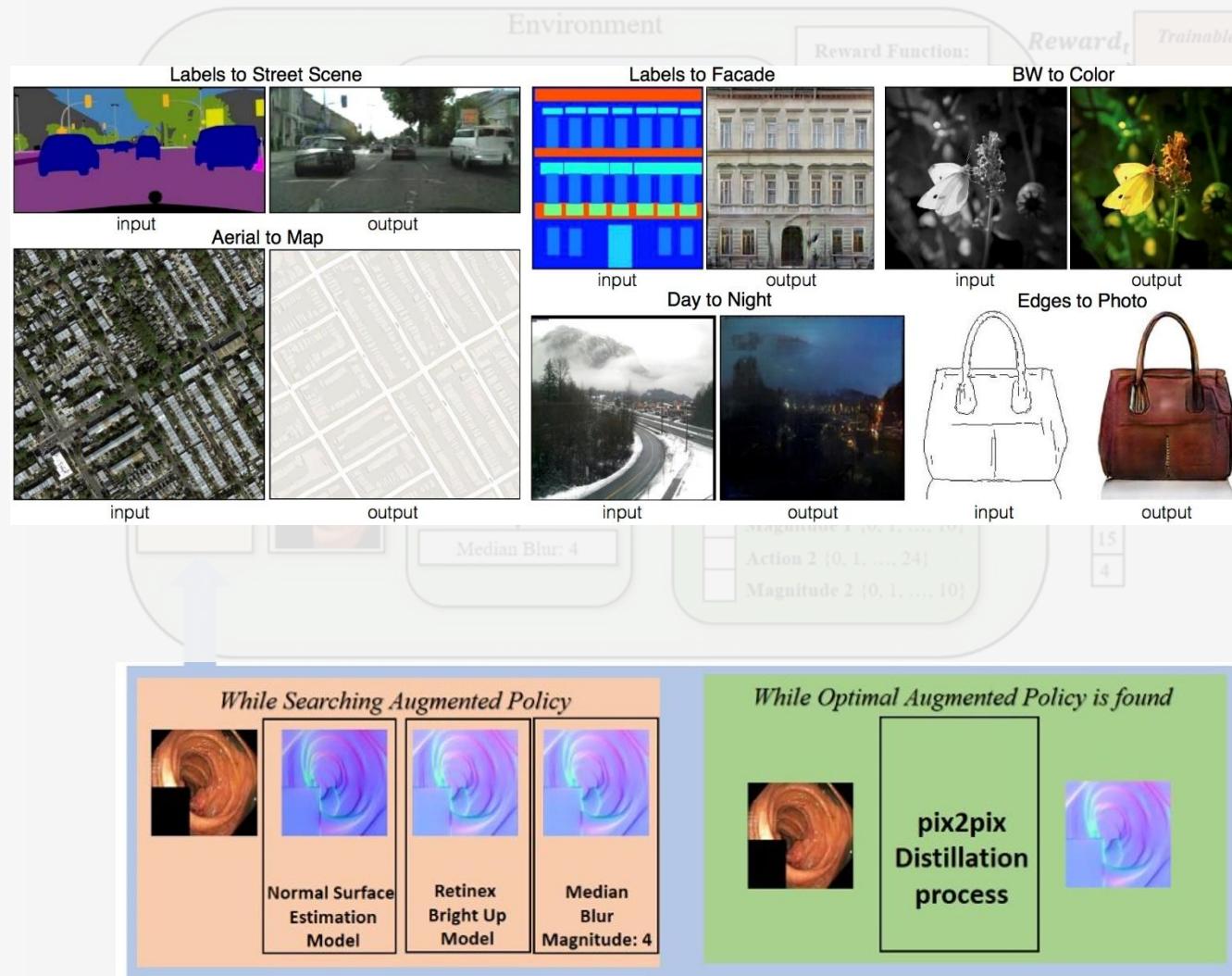
Paradigm



Paradigm

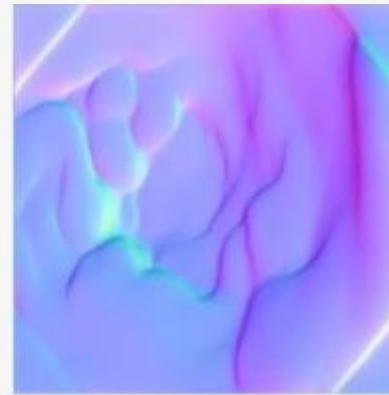
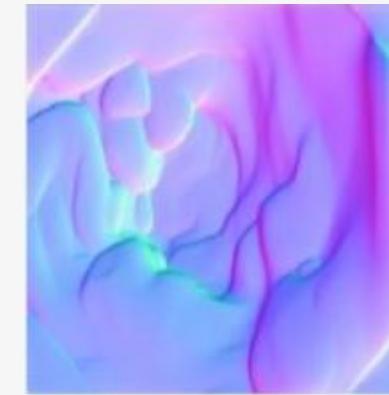


Distillation



- **During Validation Process:** After finding augmented policy, using original images and augmented images as paired images to train a generator
- **During Inferencing Process:** Using Generative Model instead to accelerate augmenting process

Distillation



Main Result (5-shot)

Backbone	Dataset Type	Dataset Name	SAM [17]	SAM-FT [11]	SAM-IA-32 (Ours)	Augmented Policy
ViT-B	Common Scenes	NJU2K	41.35	44.98	72.61	DPE-IDM-SG:3
		VT1K	47.11	49.89	65.26	DB:9-DPE-IDM
		CAMO	37.92	38.40	62.70	NSE-IDB-DPE
	Camouflage Objects	COD10K	49.78	49.83	59.95	DPE-IDB-GC:1
		NC4K	49.09	49.63	60.48	DPE-GB:1-IDB
	Depth Map	NJU2K Depth	55.83	57.23	63.44	BE:4-RBU-CR:6
	Thermal Map	VT1K-T	57.38	57.64	59.72	SL:8-NSE-DPE
	Medical Images	Kvasir	62.13	60.95	70.56	NSE-BF:3-GB:7
	Ultrasound	BUSI	52.11	56.70	59.77	MB:7-GB:4-BE:7
	Industrial Data	MTSD	54.84	54.91	56.01	GB:2-GB:2-CR:3
		KolektorSDD2	46.57	52.09	51.77	SG:8-CE:8-GB:6
ViT-H	Common Scenes	NJU2K	42.50	45.17	78.55	NSE-DPE-AME
		VT1K	49.69	51.02	63.41	DB:1-BF:8-DPE
	Camouflage Objects	CAMO	49.00	49.43	53.60	SR:8-BF:9-CR:3
		COD10K	58.39	58.50	60.67	NSE-RBU-DPE
		NC4K	57.23	57.45	66.31	DPE-SP:9-GC:7
	Depth Map	NJU2K Depth	61.37	63.47	67.92	BR:4-IDM-RBU
	Thermal Map	VT1K-T	56.58	57.44	59.48	NSE-GB:7-GB:4
	Medical Images	Kvasir	63.29	63.81	71.92	GB:0-NSE-GB:7
	Ultrasound	BUSI	54.54	56.59	56.42	GC:9-SG:0-SR:0
	Industrial Data	MTSD	59.24	59.31	58.21	BE:1-RBU-SE:6
		KolektorSDD2	48.04	54.24	54.13	CE:9-SG:7-MB:4

Table 1. 5-shot adaptation results with SAM ViT-B, ViT-H model. Our model brings significant improvement in most of domains.

Main Result (10-shot)

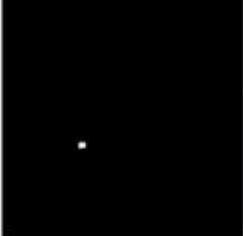
Backbone	Dataset Type	Dataset Name	SAM [17]	SAM-FT [11]	SAM-IA-32 (Ours)	Augmented Policy
ViT-B	Common Scenes	NJU2K	41.35	45.24	71.06	DPE-BE:6-CE:6
		VT1K	47.11	50.37	64.95	BE:4-DPE-IDM
	Camouflage Objects	CAMO	37.92	38.71	62.76	NSE-SE:0-DPE
		COD10K	49.78	49.89	59.13	SE:0-DPE-GC:0
	Depth Map	NC4K	49.09	49.81	64.37	DPE-SP:6-AME
		NJU2K Depth	55.83	60.24	63.44	GC:4-CE:7-IDM
	Thermal Map	VT1K-T	57.38	58.46	58.66	SE:1-IDB-DPE
		Kvasir	62.13	64.44	71.34	DB:4-NSE-DB:0
	Medical Images	BUSI	52.11	57.68	62.21	DB:8-GB:6-BF:9
	Ultrasound	MTSD	54.84	55.04	53.14	RBU-IDM-SR:1
		KolektorSDD2	46.57	53.72	51.62	SL:8-CE:7-GB:5
ViT-H	Common Scenes	NJU2K	42.50	45.89	80.69	DPE-BE:4-IDM
		VT1K	49.69	51.33	63.80	NSE-CE:1-DPE
	Camouflage Objects	CAMO	49.00	50.43	64.34	BX:4-NSE-IDM
		COD10K	58.39	58.61	62.50	CR:3-DPE-GB:6
	Depth Map	NC4K	57.23	57.64	66.37	NSE-DPE-IDM
		NJU2K Depth	61.37	64.26	67.98	IDM-AME-SR:7
	Thermal Map	VT1K-T	56.58	58.67	61.32	AME-BX:7-IDM
		Kvasir	63.29	65.21	71.81	NSE-RBU-DB:4
	Medical Images	BUSI	54.54	57.29	63.86	ED:6-CE:3-GB:6
		MTSD	59.24	59.51	58.33	SE:4-GC:3-RBU
	Industrial Data	KolektorSDD2	48.04	55.67	55.83	SG:7-CE:9-GB:8

Table 2. 10-shot training experiment with SAM ViT-B, ViT-H model. Our model brings significant improvement in most of domains.

Qualitative Result

Original

Original Pred



Augmented

Augmented Pred

Original

Original Pred

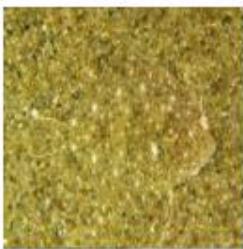
Augmented

Augmented Pred

(a) Common Scenes: NJU2k, SAM-H, +38.14 mIoU

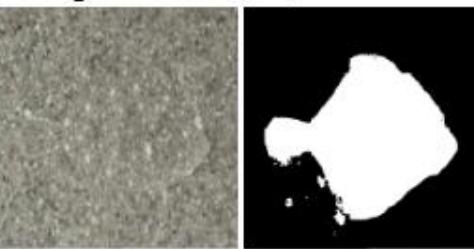
Augmented Policy: *DepthAnything*: -, *BrightnessUp*: 4, *ImageDemoirering*: 6

Original



Original Pred

Augmented



Augmented Pred

(b) Depth Images: NJU2k, SAM-H, + 6.61 mIoU

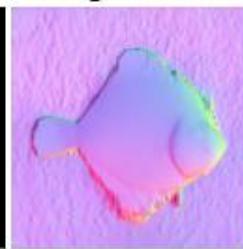
Augmented Policy: *ImageDemoirering*: -, *AlbedoMap*: -, *SaturationDown*: 7

Original

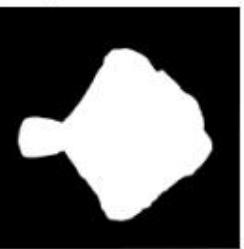


Original Pred

Augmented



Augmented Pred



(c) Camouflage Images: CAMO, SAM-H, +4.60 mIoU

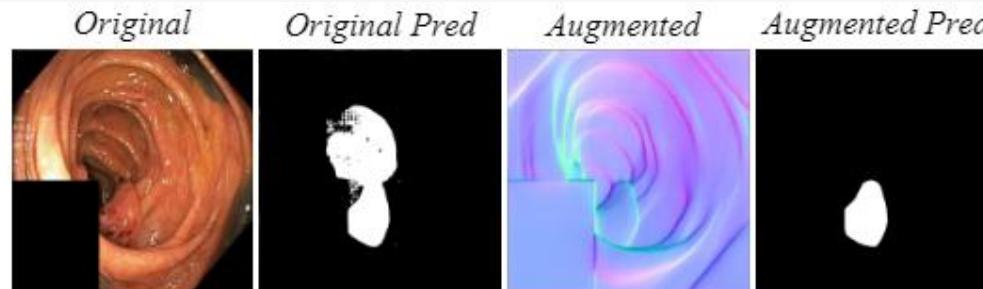
Augmented Policy: *SaturationDown*: 8, *BilateralFilter*: 9, *ContrastDown*: 3

(d) Camouflage Images: CAMO, SAM-H, + 12.39 mIoU

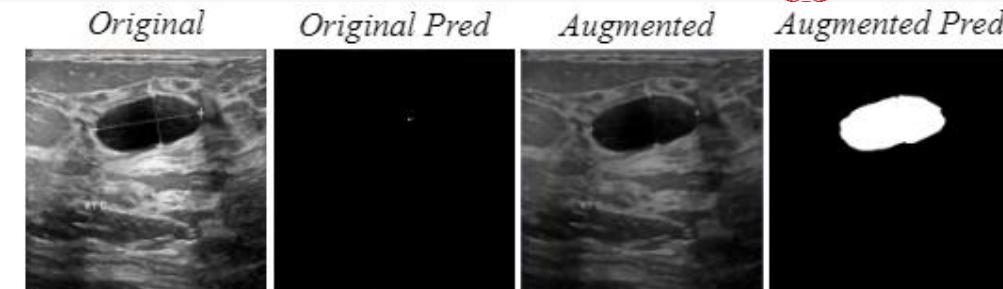
Augmented Policy: *BoxFilter*: 4, *NormalAnything*: -, *ImageDemoirering*: -

- For common fields, depth estimation helps a lot. (relative depth)
- Learning-based method brings higher upper limit for camouflage objects.

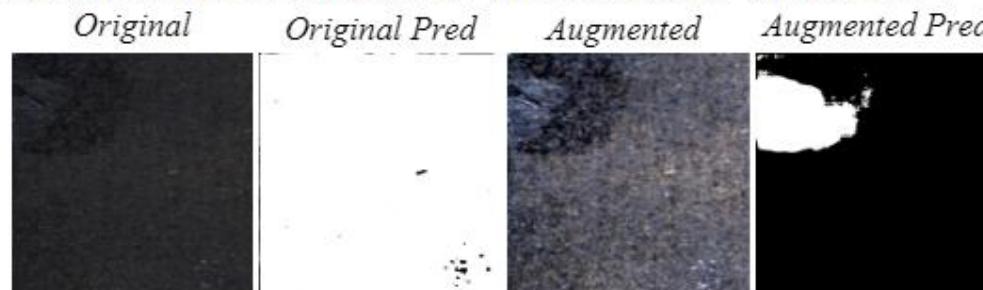
Qualitative Result



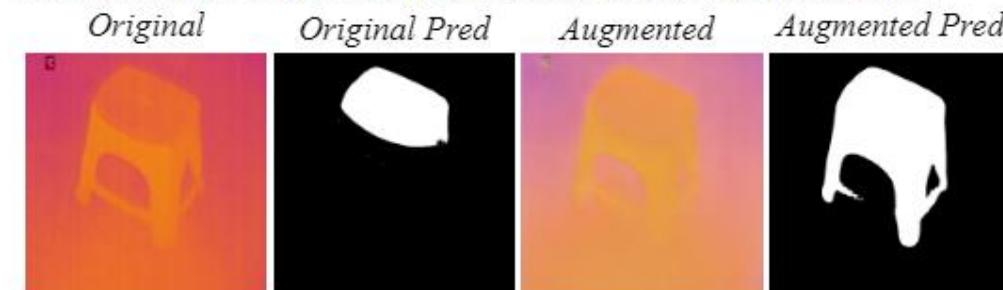
(e) Endoscopic Images: Kvasir-SEG, SAM-H, + 8.52 mIoU
Augmented Policy: *NormalAnything*: -, *RetinexBrightUp*: -, *MedianBlur*: 4



(f) Ultrasound Images: BUSI, SAM-H, + 3.31 mIoU
Augmented Policy: *BrightnessDown*: 4, *SaturationUp*: 8, *MedianBlur*: 5



(g) Industrial Data: KolektorSDDV2, SAM-H, + 9.61 mIoU
Augmented Policy: *SharpenGaussian*: 7, *ContrastUp*: 9, *GaussianBlur*: 8



(h) Thermal Images: VT1k, SAM-H, + 4.74 mIoU
Augmented Policy: *AlbedoMap*: -, *BoxFilter*: 7, *ImageDemoireing*: -

- Normal surface estimation makes tumor and polyp more obvious in medical field.
- Rule-based method performs better in industrial detection by hiding unrelated part.

Distillation Result

Dataset	Augmented Policy	Original		Distill	
		Time	mIoU	Time	mIoU
KvasirSEG	NSE-RBU-DB:4	29245.58	73.48	13.21	68.57
CAMO	SR:8-BF:9-SR:3	8.03	50.00	2.89	50.28
CAMO	SR:6-CR:2-RBU	685.56	50.42	1.96	50.34
VT1k T	AME-GB:7-IDM	122.42	61.30	2.76	61.47
NJU2k Depth	IDM-AME-SR:7	344.88	67.66	8.64	67.31
CAMO	BF:4-NME-IDM	3071.27	65.05	3.68	56.79
BUSI	ED:6-CE:3-GB:6	7.22	63.41	5.32	62.16

Table 3. Performance metrics for various image datasets and policies. All with vitH 10-shot.

- **Save a lot of time when countering time consuming methods (e.g. Normal Surface Estimation), while drops in performance.**

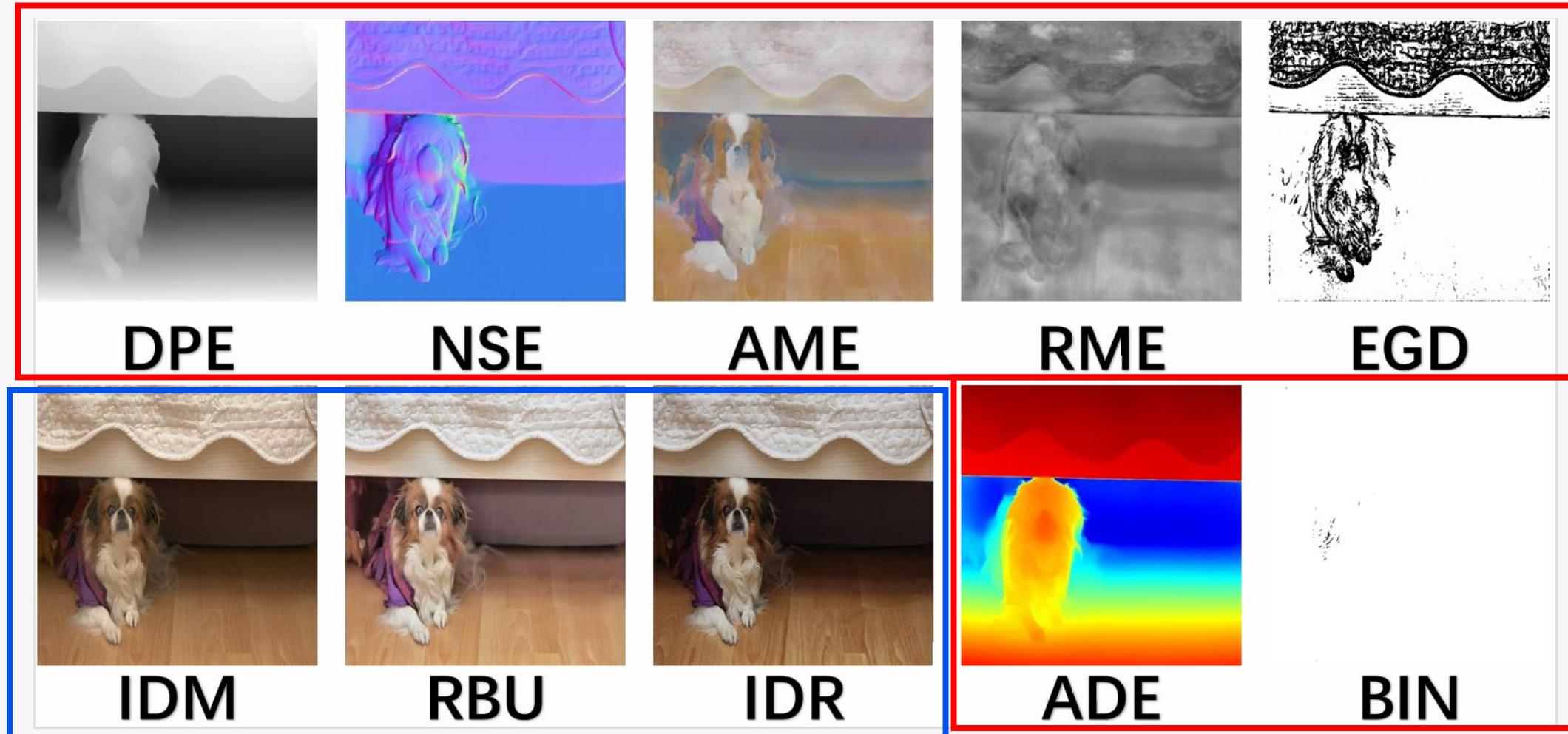
Ablation Study (Reward Design)

Dataset	Reward Function	Best Policy	mIoU	Improvement
NJU2k	Single	BF:8-SR:6-SR:6	47.95	+5.45
NJU2k	SingleResidual	DPE-LG:6-AME	80.43	+37.93
NJU2k	Three	DPE-BE:4-IDM	80.69	+38.19
NJU2k	All	DPE- BE:6-IDM	78.78	+36.28
CAMO	Single	SE:3-SR:0-GC:2	50.95	-2.37
CAMO	SingleResidual	BF:4-NSE-BF:6	63.44	+10.12
CAMO	Three	BF:4-NSE-IDM	64.34	+11.02
CAMO	All	BF:4-NSE-BF:1	63.41	+10.09

Table 4. Performance comparison of different reward functions.
All with vitH 10-shot.

- **It's one-sided to judge an augmented policy's performance on single image.**
- **Judge it on all of the training images will be time-consuming and easily lead to overfitting.**
- **Decide reward on residual or one with other two randomly picked samples will be effective.**

Ablation Study (Searching Space Design)



Ablation Study (Searching Space Design)

Dataset	Mild-25	Radical-29	Complete-32
CAMO Augmented Policy	51.14 SR:7-SR:1-SR:1	64.29 BX:7-GB:9-DPE	64.34 BX:4-NSE-IDM
VT1k T Augmented Policy	59.19 IDB-SE:3-BR:9	59.43 SR:6-DB:3-RME	61.32 AME-BX:7-IDM
NJU2k Augmented Policy	52.28 IDM-SR:3-DB:0	79.61 DPE-LG:2-AME	80.69 DPE-BE:4-IDM
NJU2k Depth Augmented Policy	65.36 CE:7-CE:2-GB:6	67.70 SE:2-AME-BF:6	67.92 IDM-AME-SR:7

Table 5. Performance comparison of different searching spaces.
All with vitH 10-shot.

- **Radical methods will bring great enhancement in performance for some domains.**
- **Mild methods will improve on basis of radical methods**
- **Both two kinds of method is helpful to final result.**

Ablation Study (Random vs Reinforcement)

Dataset	Random 1000	Random 10000	Reinforcement Learning
CAMO	61.23	57.31	64.34
Augmented Policy	DL:6-DPE-SE:3	ADE-GB:7-GC:6	BX:4-NSE-IDM
VT1k T	59.45	59.91	61.32
Augmented Policy	LG:0-SL:7-IDM	AME-CR:8-IDB	AME-BX:7-IDM
NJU2k	71.63	65.72	80.69
Augmented Policy	DPE-IDM-IDM	SR:3-IDM-RBU	DPE-BE:4-IDM
NJU2k Depth	66.73	66.73	67.92
Augmented Policy	SL:2-ED:2-AME	SL:2-ED:2-AME	IDM-AME-SR:7

Table 6. Performance comparison of completely random step and record best and reinforcement learning. All with vitH 10-shot.

- **Randomly selection will not always lead to better results when more steps are taken.**
- **Use reinforcement learning brings much more stable improvement and helps in faster convergence.**

上海交通大学
SHANGHAI JIAO TONG UNIVERSITY

Thank you for listening!