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Background & Motivation =

Video editors often need smooth and high-fidelity transitions when connecting disparate scenes. Existing
diffusion models excel at image synthesis but struggle to interpolate semantically different endpoints with

temporal coherence.
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(d) "a wooden house in the forest” — "a wooden house in the snow"

(c) “an airplane” — “a cruise”

We seek to unify four tasks — (a) object morphing, (b) motion prediction, (c) concept blending, and (d)
scene transition — under a single image-to-video diffusion framework. )




Interpolation-based Initialization
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During inference, we do ...

Noise Interpolation

Spherical linear interpolation between the
latent noises of the first and last frames

suppresses flicker and preserves structure. P

LoRA Interpolation

Two LoRA-integrated U-Nets encode
object semantics from both endpoints.

Text Interpolation

Frame-aware interpolation of text
embeddings yield intermediate
frames with hybrid textual meanings.




Bidirectional Motion Prediction & Representation Alignment Regularization

During training, we do ...
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Flip the latent sequence, rotate self-attention
maps by 180° and merge backward predictions to
ensure consistent motion trajectories.
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Patchify each frame, compute per-patch alignment
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“A woman has
to the highest point
on a swing.”
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In the object morphing, our approach produces
naturally evolving transformations that faithfully
preserve the structure and semantics of the
endpoint frames, while avoiding oversaturation or
semantic drift—demonstrating high-fidelity and
stable morph transitions.
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In the motion prediction, our method yields .
intermediate frames that are sharp and coherent, ours & ﬁ &' i ﬁ \i

maintaining consistent motion, and seamlessly
integrating foreground and background elements
to achieve a smooth dynamic progression.

Motion Prediction
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Object Morphing
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“close-up shot of

erupting volcano™ hot lava"
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In the concept blending, our framework
generates intermediate representations that
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transition. Ours

smoothly and meaningfully mediate between two 8o § Q:s - !

distinct concepts, enabling a gradual and T § —~ ’?

semantically coherent fusion without abrupt shifts. = S S . -
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In the scene transition, our approach constructs g § P . . -

visually harmonious sequences between two o S -

related scenes, delivering content continuity, Dynamicratier [l Q} : ﬂ} - !

compositional consistency, and a pleasing, natural . - - . -




Quantitative Comparisons

Across all evaluated tasks, our approach consistently
demonstrates superior or comparable performance to existing
methods under both perceptual and temporal metrics.

In the Table 1, our approach achieves the lowest FID and one of
the lowest PPL values, indicating its ability to generate high-
quality and temporally coherent transition sequences. Notably, it
attains state-of-the-art FID while maintaining competitive
perceptual smoothness, reflecting its effectiveness in preserving
both content fidelity and motion dynamics during transitions.

In the Table 2, our method yields the highest TCR and TC-Scores
across all categories. These metrics, derived from cosine
similarity and temporal consistency measures, highlight the
method’s strength in maintaining semantic coherence and
smooth frame-to-frame evolution throughout the transition
process.

In the Table 3, our framework achieves the highest smoothness
scores across different datasets, surpassing baseline methods in
generating transitions that are visually continuous and
conceptually well-integrated. This confirms its ability to handle
more abstract blending scenarios with balanced temporal
smoothness and semantic plausibility.

Method Metamorphosis Animation
FID(l) PPL(l) FID(]) PPL(})
DiffMorpher [56] 70.49 18.19 43.15 5.14
TVG [57] 86.92 35.18 42.99 12.46
SEINE [8] 82.03 47.72 48.25 16.26

DynamiCrafter [50]  87.32 42.09 43.31 11.16
VTG (Ours) 67.39 22.80 39.16 5.14

Table 1. Quantitative results on MorphBench. The best results
are in bold; second-best are underlined.

Method Attribute Object Background
TCR(t) TC-Score(t) TCR(1) TC-Score(t) TCR(T) TC-Score(T)
DiffMorpher [56] 41.82 0.844 19.57 0.765 50.00 0.819
SEINE [#] 17.86 0.720 10.48 0.654 7.96 0.742
DynamiCrafter [50] 16.55 0.745 13.91 0.707 25.56 0.795
TVG [57] 41.82 0.877 30.44 0.822 38.89 (.864
VTG (Ours) 42.78 0.893 33.46 0.849 50.00 0.883

Table 2. Quantitative results on TC-Bench. The best results are
in bold. Best viewed when zoomed in.

Dataset TEI DI

CIFAR-10 0.7531 0.7564 0.7831
LAION-Aesthetics 0.7424 0.7511 0.7643

AID-O AID-I Ours

0.7861 0.7932
0.8152 0.8215

Table 3. Smoothness (1) evaluation for Concept Blending. The
best results are in bold.
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We introduce TransitBench, the first benchmark dataset for collectively assessing concept blending transitions of two
distinct conceptual objects and scene transitions between two relevant scenarios. We collected 200 pairs of pictures
(each pair forms the first and the last frames of one transition generation sample) of diverse content and styles, and

evenly divide them into two categories: 1) concept-blending cases, and 2) scene-transition cases, both of which are
obtained from web resources.



Conclusion

Unified four transition tasks under a single diffusion-based framework

Three interpolation-based initialization modules for coherent transitions

Bidirectional Motion Prediction & Representation Alignment Regularization for better
smoothness and fidelity

Introduced TransitBench to benchmark Concept Blending and Scene Transition

Future Directions

e Longer and more complex
transitions

e Real-time insertion for
streaming video generation

Thanks for watching this video!
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