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Overview of Street Scene Reconstruction: Problem Description

Input: Vehicle-collected data (camera-captured videos, LIDAR data, etc.)

Output: Novel-view images (Images from new viewpoints)

Novel trajectory (Ours-G)
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Overview of Street Scene Reconstruction: Application

Application 1:Rendering novel views can generate data for different vehicle models, which can
be used to train end-to-end planner algorithms.
Challenge: Dynamic street scene reconstruction.

Application 2:The reconstructed 3D scenes can serve as realistic simulators for evaluating
planner algorithms.

Challenge: Large-scale scene reconstruction.
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n Overview of Street Scene Reconstruction: Problem

Problem 1: Rendering novel views to generate clip data for different vehicle models —
Dynamic Street Scene Reconstruction

It IS necessary to achieve high-quality reconstruction of dynamic objects such as
vehicles and pedestrians in order to generate high-quality clip data for autonomous
driving planners.

Related Research: Neural Scene Graph, Street Gaussian, OmniRe, etc.

Problem 2: Reconstructing real-world scenes as realistic simulators — Large-Scale
Scene Reconstruction

It Is essential to realize high-quality large-scale scene reconstruction and real-time
rendering in order to build a high-quality simulator for evaluating autonomous driving
planner algorithms.

Related Research: Block NeRF, Vast Gaussian, Hierarchical Gaussian, etc.



Street Scene Reconstruction Technology: Dynamic Street Scene Reconstruction

The Neural Scene Graph is proposed to model dynamic street scenes.

(a) Neural scene graph in isometric view. (b) Neural scene graph from the ego-vehicle view.

Neural scene graph, Julian et al, CVPR2021



Street Scene Reconstruction Technology: Dynamic Street Scene Reconstruction

The first to propose a Gaussian Scene Graph for modeling dynamic street scenes.
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Street Scene Reconstruction Technology: Dynamic Street Scene Reconstruction

Building upon Street Gaussian, SMPL is utilized to achieve pedestrian reconstruction.
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Scene Reconstruction Technology: Large-Scale Scene Reconstruction

Divide the large-scale street scene into multiple blocks, with each block reconstructed using an independent
NeRF.

Block NeRF, Tancik et al, CVPR2022



Scene Reconstruction Technology: Large-Scale Scene Reconstruction

Divide the large-scale scene into multiple blocks, with each block reconstructed using 3D Gaussian
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Scene Reconstruction Technology: Large-Scale Scene Reconstruction

Divide the large-scale scene into multiple blocks, with each block reconstructed using 3D Gaussian
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m Introduction to Our Research Work

Research Objective:

To address both dynamic street scene reconstruction and large-scale scene reconstruction within a unified framework.

Problem 1.
Large-Scale Scene

Problem 2:
Dynamic Object
Reconstruction Reconstruction
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Solution Approach:
Model large-scale dynamic scenes using Hierarchical Unified Gaussian Primitives.

Divide the large-scale dynamic scene into multiple sub-scenes, and use UGP
(4DGS) to model each sub-scene.

A\amo_—s_(‘\_]_ar_e :__S.f - & / \5/
o i 1 @ \ / N -
r - i ° o°! ° \ / = \
\ :_’ | 1den Ga® AY & :n: ‘\ / \
5 @ Goldeh =y G /
\ ® den \_*P g 2 @ 1 /
\ 2 o] 1 \ / A
\ . ° o ik Dynamic scene
 — \
\ ' @ o \ /
\ @ ) ‘s 1
\ L I\
\ ° @ J ‘\ |
\ t @ i "< /
\ Hayes S ) ST N
\L :d_ e &'.. ooy ® Block-NeRF “ ) .
1 km S .
S 4D Gaussians

13



m Detailed Methodology

The Hierarchy UGP framework Is proposed, achieving for the first time high-quality
reconstruction and real-time rendering of large-scale dynamic street scenes.
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Training Strategy

Block-wise Objects: For vehicles that span across multiple sub-scenes.

Target View
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m Training Strategy

Block-wise Objects

w/ Block-wise Objects

w/o Block-wise Objects
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m Training Strategy

Temporal Scale Initialization
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m Training Strategy

Temporal Scale Initialization

w/ Temporal Scale Initialization

w/o Temporal Scale Initialization
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m Experimental Results (Qualitative)

(c) OmniRe
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(e) 4D-GS

(f) Hierarchical GS
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m Experimental Results (Quantitative)

Large 001 Large 002 Large 003 Large 004
PSNRT SSIMtT LPIPS| PSNRT SSIMt LPIPS| PSNRt SSIMt LPIPS| PSNRtT SSIMtT LPIPS|
PVG [3] 25.03 0.825 0.321 23.27 0.792 0.373 23.79 0.788 0.341 21.82 0.743 0.366
OmniRe [4] 24 .48 0.776 0.336 22.17 0.734 0.386 23.00  0.729 0.323 23.07 0.737 0.222
Hierarchical GS [9] 27.00  0.870 0.171 25.33 0.852 0.185 24.73 0.840 0.191 25.68 0.857 0.186
Ours 27.29 0.871 0.164 25.46 0.853 0.182 2524  0.845 0.185 26.5 0.860 0.181

Table 2. More Quantitative Comparison on Dynamic City. We selected every 10th frame as a test frame and computed visual quality

metrics in four large scenes. used LOD level 7 = 1. Each cell is colored to indicate the best .

Methods

Ours

PSNRT LPIPS| PSNR*t SSIM*t PSNRf LPIPS| PSNR*t SSIM*t PSNRT LPIPS| PSNR*t SSIM*{

327
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788

32.46
30.95
32.01
31.16
30.71

StreetGS OmniRe
0.120 26.66 0.823 36.24 0.090 28.56
0.161 30.74 0.897 30.97 0.169 26.36
0.102 24 .98 0.810 35.05 0.074 27.23
0.142 25.98 0.820 33.37 0.094 27.09
0.161 25.92 0.824 31.24 0.150 25.43

0.839
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0.789
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35.04
33551
31,73

0.085
0.158
0.071
0.098
0.139

34.52
3541
2D
82:65
32.96

0.947
0.964
0.936
(9SS
0.949

Table 3. More Quantitative Comparison on Waymo. We computed visual quality metrics, where * denotes the metrics for the pedestrian
regions. Each cell is colored to indicate the best .
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m Conclusion

Research Objective: To address both dynamic street scene reconstruction and large-scale
scene reconstruction within a unified framework.

Problem 1:

Problem 2:
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Thank You!
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