HONOLULU

ViM-VQ: Efficient Post-Training Vector ICCV
HAWAII

Quantization for Visual Mamba 00T 19-23, 2025

Juncan Deng!?, Shuaiting Lil?, Zeyu Wang?!, Kedong Xu?,
Hong Gu?, Kejie Huang!

1 Zhejiang University
2 VIVO Mobile

Vector Quantization for ViMs

—————————— e

% b
{ S?agsz___;(_l,;l I, ————————) i/___?__\\// ;1 i E 0.15 .15
| | / 5] .10 20
i VSS Block | ,'| ! /II Linear | & | E
\‘D_OEVEsaIPIZ_ﬂe_’) ,: — : I T \\: % 1 . Uniform quantization 2D vector quantization
I I/ | \ 2 : | 0.00 ¥
________ . 'COIN N = i
| Stage 3 X L3 ” | T] : | \\ S ! : ~
| VSSBlock || LN " ! T L\ S i R 206 X Gans2, o~
| | | / | | \'_‘ !) ’
b e !l | SS2D , , i : :
! _OXVE?E]B - Il : ! T : (b) Weight Matrices (c) 2-bit UQ Error (d) 2-bit VQ Error
|1 | | |
[Stase 2 x L. N /] '
Stage 2 X L, bl | ;o : SiLU |
! VSS Block . i | T :
|
| Downsample || : S B |
Bt il a4 Block , | DWconv i 1
L v | VQ has better quantization performance
(“Stage 1 XLy, | T \ : T |
| |
| VSSBlock | || EN ! [Linear |
N S \ |
Patch Partition _ﬂ___,’ V___I__,’
Visual Mamba Networks (ViMs) Results for Object Detection and Instance Segmentat

* To reducing memory usage and computational latency, it is generally
necessary to develop vector quantization algorithm for Visual Mamba
networks (ViMs).

Background of Vector Quantization

Vector Quantization (VQ) is a hardware-friendly compression technique.

Weight
lreshape vQ reshape

g Codebook Assignment

< . < - >
Reshaped Matrix Decoded Matrix

Limitation in Previous VQ works

However, Existing VQ methods are ineffective.

CUuLIcIIt

layers.0.blocks.1.op.out_proj in VMamba-T

Hard . X Soft Weight Optimal X Convex
Assigilrment ---------- >Gradient As§ignment ® Codeword @ Sub-vector .queword ® g.llllir\l/telczzte(i Q Hull
o g ; o
° ® : : ° 0.25/',"' o
® ® ® ',.'/'0.25 @
o : : O
o e o @
(a) Conventional VQ : (b) Global Weighted Average VQ i (c) Local Weighted Average VQ 0 200 400 600 800 1000
Soft Assignments of Each Sub-vector
Too simplistic, only Prohibitive overhead of Degraded performance of Truncation error from
fine-tunes codebook global soft assignments local soft assignments soft-to-hard assignments

‘ How can we boost VQ during finetuning?

ViM-VQ Algorithm Overview

Current

Hard . - X, Soft Weight Optimal , Convex
Assignment grattient Assignment @iCodewotd ‘Sub-vector 'Codeword ® Quantized O Hull
: ! Sub-vector
/0,01
© / Confirming

— o

Incremental Vector Quantization

* The core idea is a local search with a dynamically updated scope to
achieve progressive quantization.

ViM-VQ Algorithm

Z/olo1
® / Confirming

'u/}o,z'/d - Z Co,i/dRo,i/d

Co,i/d — Co,i/d - O(Vco,i/dﬁinita ec)a
Royijd < Roija — O(VR, ;4 Linits Or),

cgfi/d < argmin ||W,;/q — c(k)||3,
C(k)ec\co,i/d

o~ m
Wo,i/d <= Coi/d

. m
Qo,i/d < lndex(co,i/d)‘

Stepl: Construct convex combination for
neighboring codewords, initializing them
near the original weight.

Step2: Finetune the combinations and
update the convex hulls towards a more
optimal solution.

Step3: Confirm high-confidence codeword
as result of incremental quantization.

ViM-VQ Algorithm

I'Algorithm 1 VIM-VQ

Input: Weight matrix W, calibration data (x,y)
Output: Codebook C, assignments A
C, A = K-Means(W, k)

> Phase 1: Fast Convex Combination Optimization
for each sub-vector w, ; /4 in W do

Co,ia = Topy (= ||wo,ifa — c(k)|13)

Ro,ija = softmax(z ;/q)

Convex combination: (C, /4, Ro.i/q)
end for
W=)Y CoR

2 190 5l Oy Sl D i

—
=

> Initialize codewords and ratios
: while not converged do

Linit = [|[W — W|3

C+—C—-O(V Ly, 0:), R—R—O(VLin,0r)
- end while

—_ e e = e
g TN B B

> Phase 2: Incremental Vector Quantization
. for calibration stept = 1to 1" do

18: Y = €(x)

19: L=L+ Lyg+ L,

20: C+~C-0O(V.L,0.), R+R-0O(V.L,0,)

21: > Confirm high-ratio assignments

22: for each sub-vector with rgfi g =T do

23: {Eo,i/d — Cg?i/d

24: L index(cgfi / 2)

25: end for

26: > Adaptive candidate replacement

27: for each candidate with rgfi TR A do

28: otz < argmin || @Woi/a — c(k)||3
c(k)€C\Co,i/a

29: end for

30: end for

31: return C, A

- o mm mm mm O Em Em Em Em Em Em Em EE M M o Em Em Em Em Em O O R Em Em Em Em Em
—
~

0.56

0.36

0.99

0.42

0.99

0.58

Quantized Weight
Incremental Vector Quantization

Algorithm Evaluation

* ViIM-VQ demonstrate its superiority over VQ and UQ.

Bit Method mé(gU mléloSU mAcc aAcc ®
Model Nctizod Top-1 Accuracy (%) $S) (MS) 10
(Params) FP 3-bit 2-bit 1-bit Swin-T 44.5 45.8 - - "
FP ConvNeXt-T 46.0 46.7 - . ‘
UQf 5284 016 - _
GPTQ 5674 017 i VMamba-T 479 48.8 59.2 824
MambaQuant 5721 0.18 - PQF 427 436 582 797 .
3 PTQ4VM 5729 0.18 R ’ DKM 44.1 44.8 58.7 80.6 Out &, a0 20
V;I;T vot 7607 | 6756 33.18 0.2 VQ4DiT 439 447 584 806 i 3=
DKM 73.64 T71.25 68.29 PQF 28.5 29.0 399 72.6
VQ4DiT 73.57 T71.04 67.72 1 DKM 37.2 37.6 52.8 76.6
ViM-VQ (Ours) 7479 7217 69.93 VQ4DIT 362 368 519 762
ug' 7231 016 i ViM-VQ (Ours) | 41.1 41.8 56.0 77.3

GPTQ 74.45 0.20 .
MambaQuant 74.57 0.24 - -
" PTQ4VM 7468 025 - segmentation

(26M) vQt 80.48 | 77.59 65.96 0.37
PQF 78.46 7328 1093) — - w— s
DKM 7970 77.96 7038 Bit | Method | AP™ APG' AP]
VQ4DIT 7937 77.87 69.73 Swin-T 427 - 39.3]
ViM-VQ (Ours) 80.10 78.66 72.02 Fp | ConvNeXt-T 44.2 . 40.1 .
VMamba-T | 473 693 427 664
uQf 76.17 2.06 -
GPTQ o8l aar PQF 446 665 406 63.7
: : DKM 457 682 415 648
SdambaOuang oL e - e VQ4DIT 455 619 414 647
Vim-B ETQAYM 7717 362 - VIM-VQ (Ours) | 460 688 418 65.7
vol 81.88 | 77.78 70.88 5.8
(58M) PQF 7876 76.02 2740 PQF 331 530 312 505
ks OB, TS A X DKM 375 580 354 554
sy VQ4DIT 366 569 340 543
il LI dudr 1A VIM-VQ (Ours) | 409 607 358 57.9
ViM-VQ (Ours) 80.34 79.46 75.58 : : : :

classification detection (e) Our 2-bit VIM-VQ

Algorithm Evaluation

Method | Setting | Weight Storage Size | Ratio | Time

FP | | 360MB | 1.0x |
GP1Q P Qweight + S + Z = o
AWQ group 22 5MB + 6.0MB 12.6x Im
OmniQ (g128) ') 48m

MambaQ per- Qweight+ S + Z = 15.1 x 16m
PTQ4VM | channel 22.5MB + 1.3MB ’ 92m
DKM 256 . _ 1 day
VQ4DIT | x 23?3513 g\gB 157% | 104m
ViM-VQ 4 ' . 88m
Compression Ratio
C | Method | n E Mem Acc-C Acc-I
DKM | 256 14 25GB 7198 71.25
256 | VQ4DiT | 4 2 11GB 7133 71.04
x | VIM-VQ | 4 2 11GB 7217 7217
4 | VIM-VQ | 16 4 12GB 7231 7231
VIM-VQ | 64 8 14GB 7234 7234

Computation Overhead

*vs. Uniform Quantization (UQ):
* Achieves superior compression rates.

*vs. Vector Quantization (VQ):
* Reduces computational overhead.
* Maintains accuracy consistency
between calibration and inference.

Summary

In this worlk,

* We propose ViM-VQ, an efficient post-training vector quantization method
tailored for Visual Mamba networks (ViMs).

* We introduce a fast convex combination optimization to search for optimal
codewords, and an incremental quantization to mitigate truncation errors.

* ViM-VQ achieves superior performance in low-bit quantization across
various tasks.

Contact Me by E-mail:
dengjuncan@zju.edu.cn

