

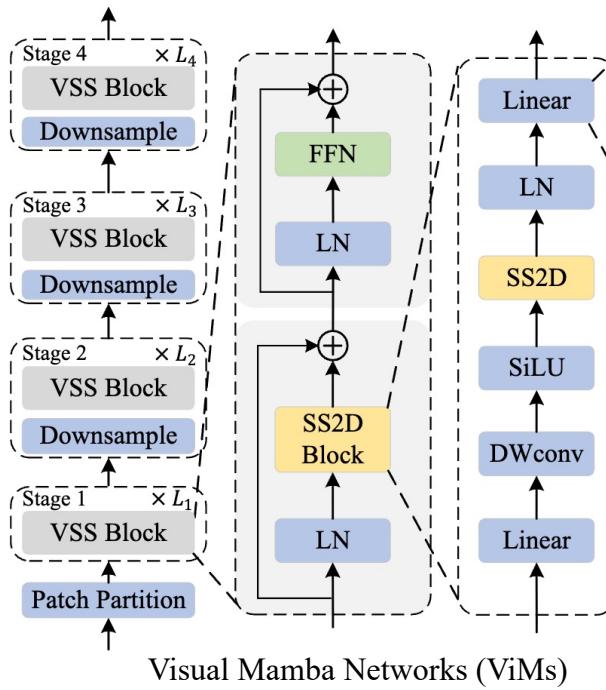
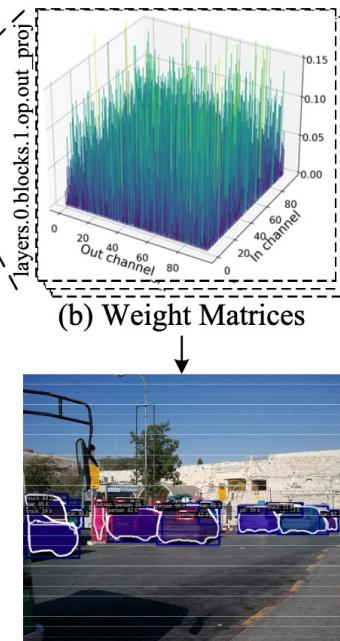
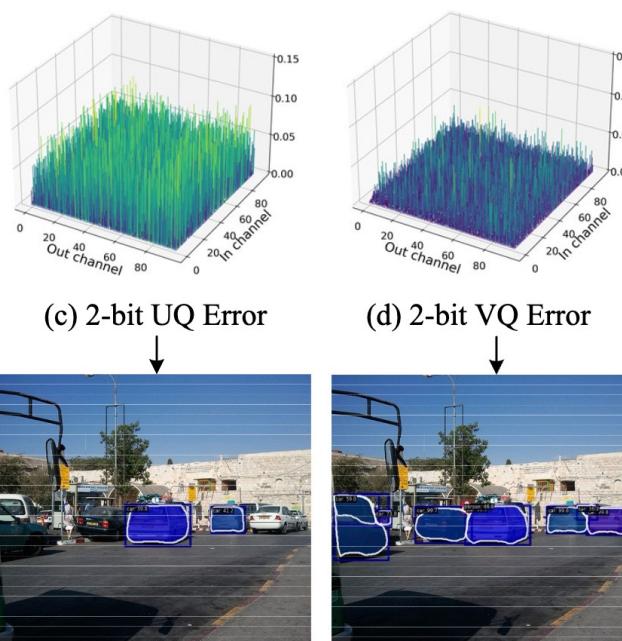
ViM-VQ: Efficient Post-Training Vector Quantization for Visual Mamba

Juncan Deng^{1,2}, Shuaiting Li^{1,2}, Zeyu Wang¹, Kedong Xu²,
Hong Gu², Kejie Huang¹

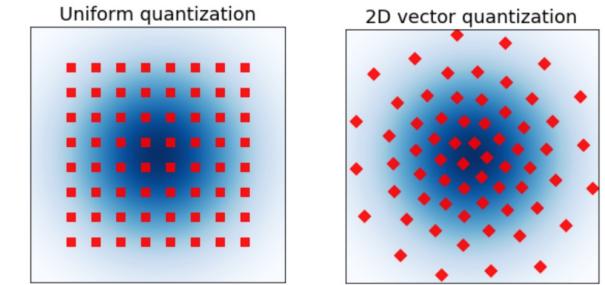
1 Zhejiang University

2 VIVO Mobile

Vector Quantization for ViMs



Results for Object Detection and Instance Segmentation

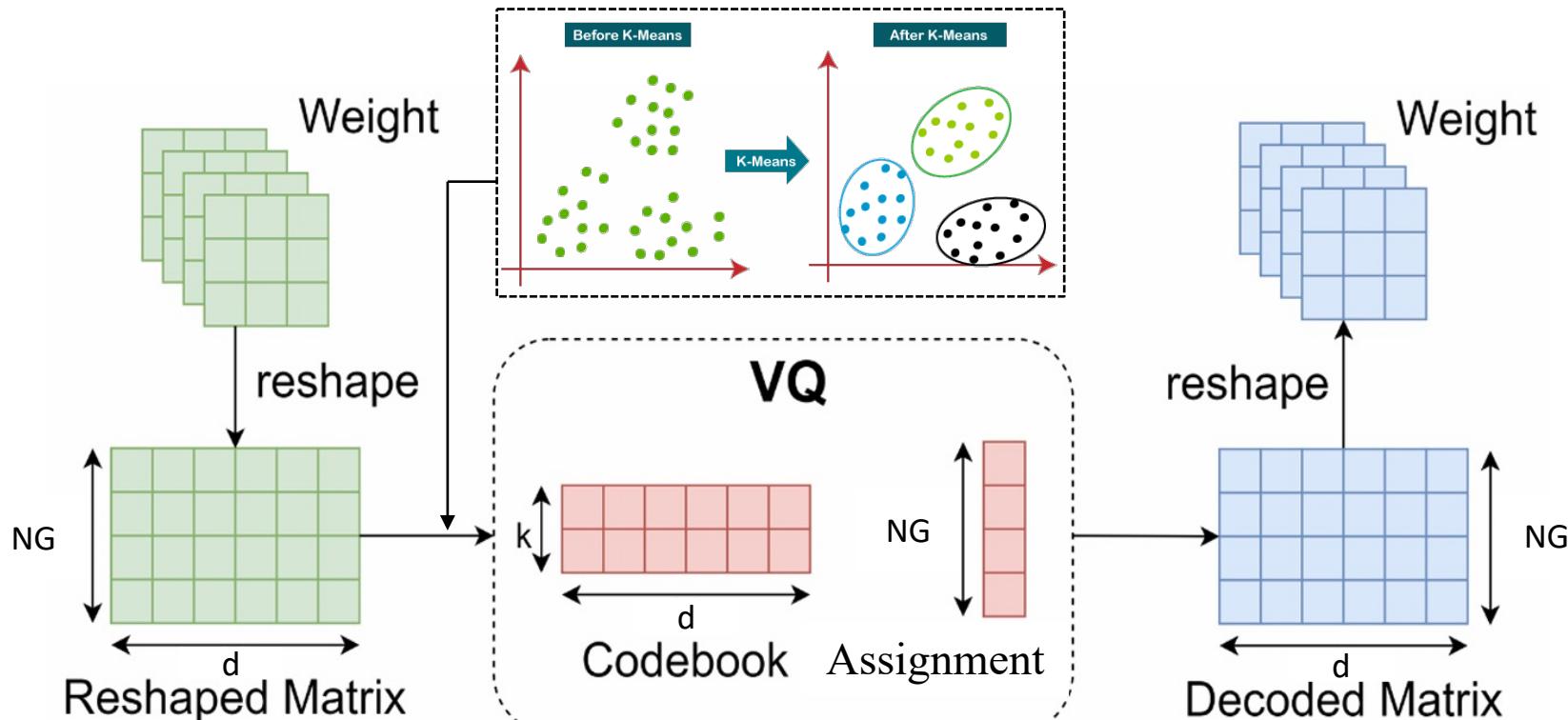


VQ has better quantization performance

- To reducing memory usage and computational latency, it is generally necessary to develop **vector quantization** algorithm for Visual Mamba networks (ViMs).

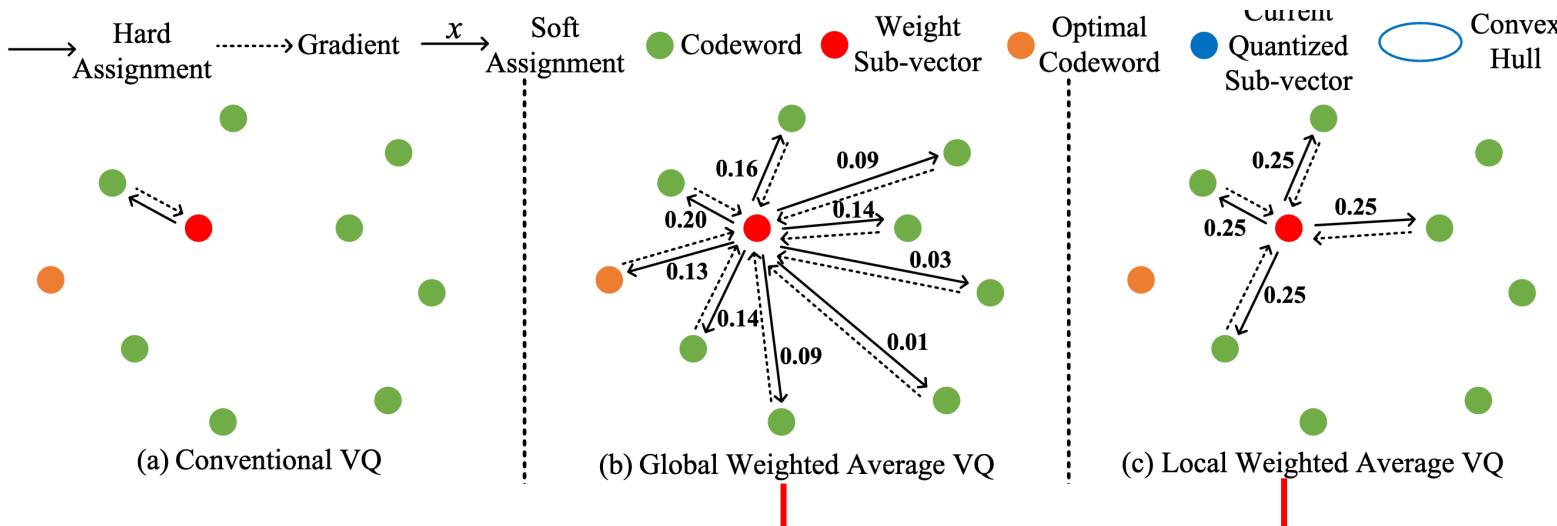
Background of Vector Quantization

Vector Quantization (VQ) is a hardware-friendly compression technique.



Limitation in Previous VQ works

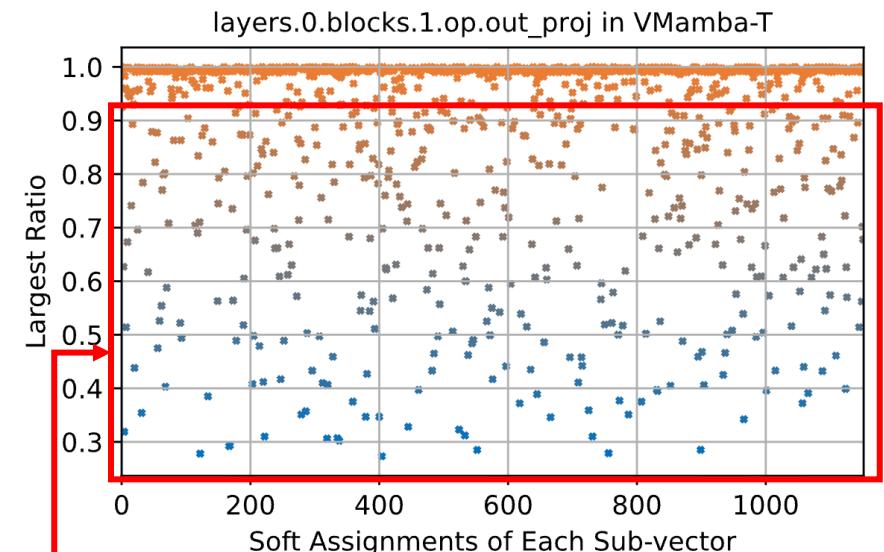
However, Existing VQ methods are ineffective.



Too simplistic, only fine-tunes codebook

Prohibitive overhead of global soft assignments

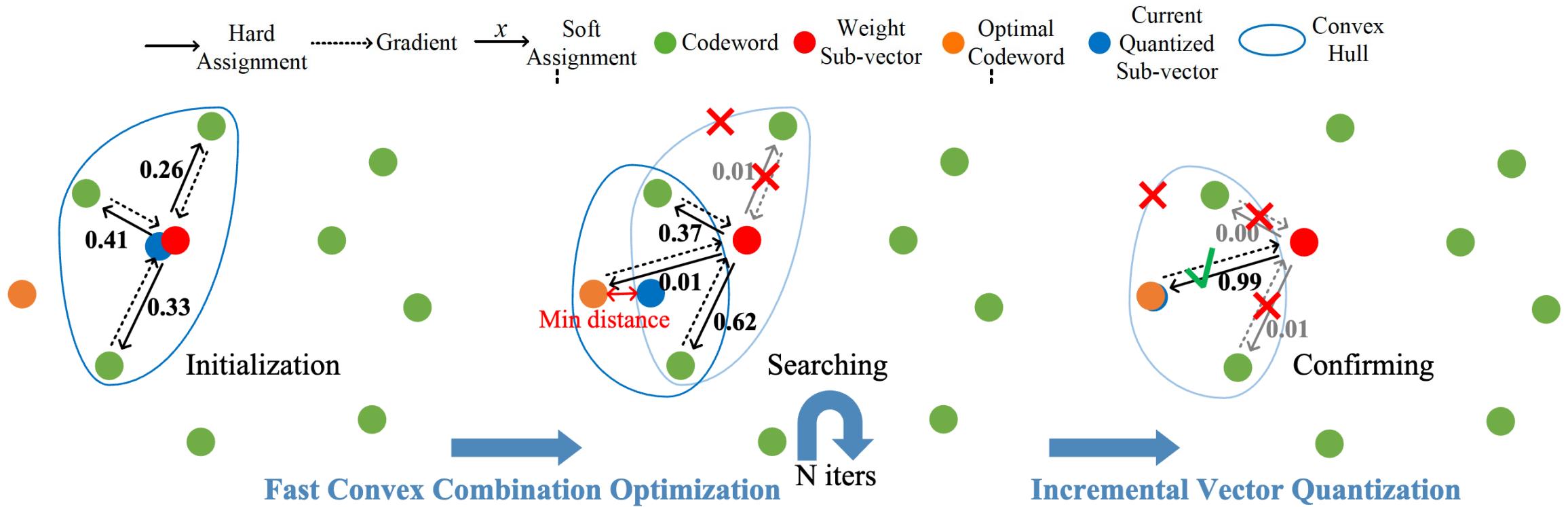
Degraded performance of local soft assignments



Truncation error from soft-to-hard assignments

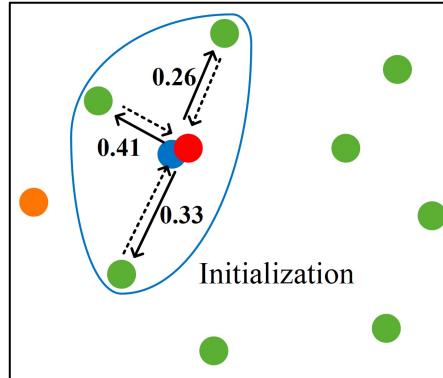
How can we boost VQ during finetuning?

ViM-VQ Algorithm Overview

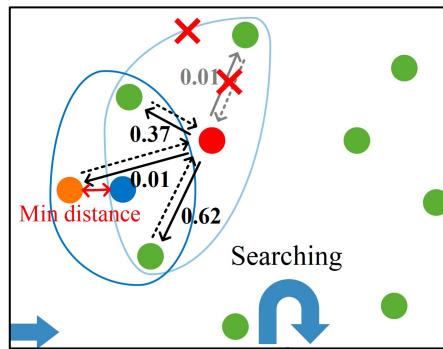


- The core idea is a local search with a dynamically updated scope to achieve progressive quantization.

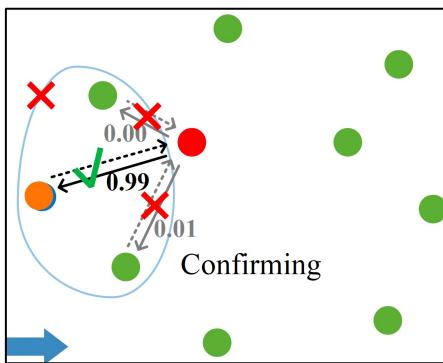
ViM-VQ Algorithm



$$\hat{w}_{o,i/d} = \sum \mathcal{C}_{o,i/d} \mathcal{R}_{o,i/d}$$



$$\begin{aligned}\mathcal{C}_{o,i/d} &\leftarrow \mathcal{C}_{o,i/d} - O(\nabla_{\mathcal{C}_{o,i/d}} \mathcal{L}_{\text{init}}, \theta_c), \\ \mathcal{R}_{o,i/d} &\leftarrow \mathcal{R}_{o,i/d} - O(\nabla_{\mathcal{R}_{o,i/d}} \mathcal{L}_{\text{init}}, \theta_r), \\ c_{o,i/d}^m &\leftarrow \underset{c(k) \in \mathbf{C} \setminus \mathcal{C}_{o,i/d}}{\operatorname{argmin}} \|\hat{w}_{o,i/d} - c(k)\|_2^2,\end{aligned}$$



$$\begin{aligned}\hat{w}_{o,i/d} &\leftarrow c_{o,i/d}^m, \\ a_{o,i/d} &\leftarrow \text{index}(c_{o,i/d}^m).\end{aligned}$$

Step1: Construct convex combination for neighboring codewords, initializing them near the original weight.

Step2: Finetune the combinations and update the convex hulls towards a more optimal solution.

Step3: Confirm high-confidence codeword as result of incremental quantization.

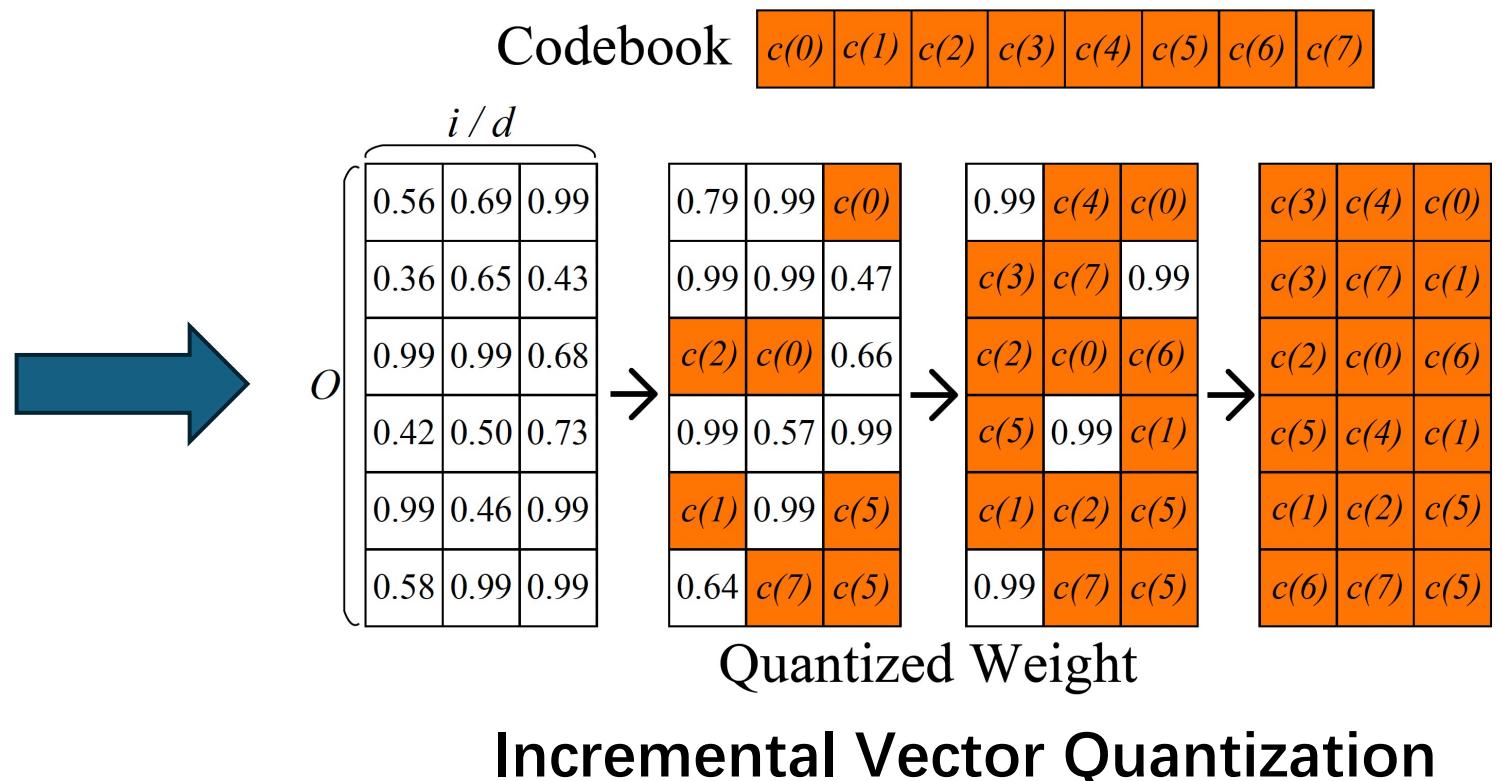
ViM-VQ Algorithm

Algorithm 1 ViM-VQ

```

1: Input: Weight matrix  $\mathbf{W}$ , calibration data  $(\mathbf{x}, \mathbf{y})$ 
2: Output: Codebook  $\mathbf{C}$ , assignments  $\mathbf{A}$ 
3:  $\mathbf{C}, \mathbf{A} = \text{K-Means}(\mathbf{W}, k)$ 
4:  $\triangleright$  Phase 1: Fast Convex Combination Optimization
5: for each sub-vector  $w_{o,i/d}$  in  $\mathbf{W}$  do
6:    $\mathcal{C}_{o,i/d} = \text{Top}_n(-\|w_{o,i/d} - c(k)\|_2^2)$ 
7:    $\mathcal{R}_{o,i/d} = \text{softmax}(z_{o,i/d})$ 
8:   Convex combination:  $(\mathcal{C}_{o,i/d}, \mathcal{R}_{o,i/d})$ 
9: end for
10:  $\widehat{\mathbf{W}} = \sum \mathcal{C} \odot \mathcal{R}$ 
11:  $\triangleright$  Initialize codewords and ratios
12: while not converged do
13:    $\mathcal{L}_{\text{init}} = \|\mathbf{W} - \widehat{\mathbf{W}}\|_2^2$ 
14:    $\mathcal{C} \leftarrow \mathcal{C} - O(\nabla_c \mathcal{L}_{\text{init}}, \theta_c), \quad \mathcal{R} \leftarrow \mathcal{R} - O(\nabla_r \mathcal{L}_{\text{init}}, \theta_r)$ 
15: end while
16:  $\triangleright$  Phase 2: Incremental Vector Quantization
17: for calibration step  $t = 1$  to  $T$  do
18:    $\widehat{\mathbf{y}} = \epsilon_q(\mathbf{x})$ 
19:    $\mathcal{L} = \mathcal{L}_t + \mathcal{L}_{\text{bkd}} + \mathcal{L}_r$ 
20:    $\mathcal{C} \leftarrow \mathcal{C} - O(\nabla_c \mathcal{L}, \theta_c), \quad \mathcal{R} \leftarrow \mathcal{R} - O(\nabla_r \mathcal{L}, \theta_r)$ 
21:    $\triangleright$  Confirm high-ratio assignments
22:   for each sub-vector with  $r_{o,i/d}^m > \tau$  do
23:      $\widehat{w}_{o,i/d} \leftarrow c_{o,i/d}^m$ 
24:      $a_{o,i/d} \leftarrow \text{index}(c_{o,i/d}^m)$ 
25:   end for
26:    $\triangleright$  Adaptive candidate replacement
27:   for each candidate with  $r_{o,i/d}^m < \lambda$  do
28:      $c_{o,i/d}^m \leftarrow \underset{c(k) \in \mathbf{C} \setminus \mathcal{C}_{o,i/d}}{\text{argmin}} \|\widehat{w}_{o,i/d} - c(k)\|_2^2$ 
29:   end for
30: end for
31: return  $\mathbf{C}, \mathbf{A}$ 

```



Algorithm Evaluation

- ViM-VQ demonstrate its superiority over VQ and UQ.

Model (Params)	Method	Top-1 Accuracy (%)			
		FP	3-bit	2-bit	1-bit
Vim-T (7M)	UQ [†]	76.07	52.84	0.16	-
	GPTQ		56.74	0.17	-
	MambaQuant		57.21	0.18	-
	PTQ4VM		57.29	0.18	-
	VQ [†]		67.56	33.18	0.22
	PQF		71.71	61.84	4.20
	DKM		73.64	71.25	68.29
	VQ4DiT		73.57	71.04	67.72
	ViM-VQ (Ours)		74.79	72.17	69.93
Vim-S (26M)	UQ [†]	80.48	72.31	0.16	-
	GPTQ		74.45	0.20	-
	MambaQuant		74.57	0.24	-
	PTQ4VM		74.68	0.25	-
	VQ [†]		77.59	65.96	0.37
	PQF		78.46	73.28	10.93
	DKM		79.70	77.96	70.38
	VQ4DiT		79.37	77.87	69.73
	ViM-VQ (Ours)		80.10	78.66	72.02
Vim-B (98M)	UQ [†]	81.88	76.17	2.06	-
	GPTQ		76.81	2.47	-
	MambaQuant		77.01	3.49	-
	PTQ4VM		77.17	3.62	-
	VQ [†]		77.78	70.88	5.28
	PQF		78.76	76.02	27.40
	DKM		80.02	79.18	74.57
	VQ4DiT		79.73	78.86	74.37
	ViM-VQ (Ours)		80.34	79.46	75.58

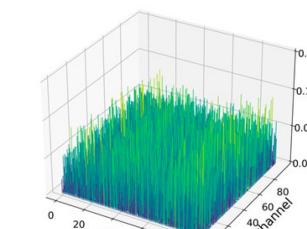
classification

Bit	Method	mIoU (SS)	mIoU (MS)	mAcc	aAcc
FP	Swin-T	44.5	45.8	-	-
	ConvNeXt-T	46.0	46.7	-	-
	VMamba-T	47.9	48.8	59.2	82.4
2	PQF	42.7	43.6	58.2	79.7
	DKM	44.1	44.8	58.7	80.6
	VQ4DiT	43.9	44.7	58.4	80.6
	ViM-VQ (Ours)	44.4	45.4	58.9	81.0
1	PQF	28.5	29.0	39.9	72.6
	DKM	37.2	37.6	52.8	76.6
	VQ4DiT	36.2	36.8	51.9	76.2
	ViM-VQ (Ours)	41.1	41.8	56.0	77.3

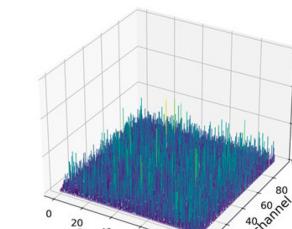
segmentation

Bit	Method	AP ^{box}	AP ₅₀ ^{box}	AP ^{mask}	AP ₅₀ ^{mask}
FP	Swin-T	42.7	-	39.3	-
	ConvNeXt-T	44.2	-	40.1	-
	VMamba-T	47.3	69.3	42.7	66.4
2	PQF	44.6	66.5	40.6	63.7
	DKM	45.7	68.2	41.5	64.8
	VQ4DiT	45.5	67.9	41.4	64.7
	ViM-VQ (Ours)	46.0	68.8	41.8	65.7
1	PQF	33.1	53.0	31.2	50.5
	DKM	37.5	58.0	35.4	55.4
	VQ4DiT	36.6	56.9	34.0	54.3
	ViM-VQ (Ours)	40.9	60.7	35.8	57.9

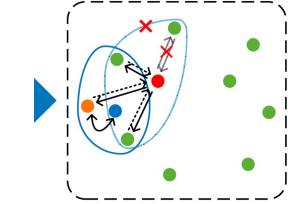
detection



(c) 2-bit UQ Error



(d) 2-bit VQ Error



(e) Our 2-bit ViM-VQ

Algorithm Evaluation

Method	Setting	Weight Storage Size	Ratio	Time
FP	-	360MB	1.0×	-
GPTQ AWQ OmniQ	per-group (g128)	$Q_{\text{weight}} + S + Z = 22.5\text{MB} + 6.0\text{MB}$	12.6×	35m 1m 48m
MambaQ PTQ4VM	per-channel	$Q_{\text{weight}} + S + Z = 22.5\text{MB} + 1.3\text{MB}$	15.1×	16m 92m
DKM VQ4DiT ViM-VQ	256 × 4	$Q_{\text{weight}} + C = 22.5\text{MB} + \mathbf{0.5\text{MB}}$	15.7×	1 day 104m 88m

Compression Ratio

C	Method	n	E	Mem	Acc-C	Acc-I
256	DKM	256	14	25 GB	71.98	71.25
	VQ4DiT	4	2	11 GB	71.33	71.04
	ViM-VQ	4	2	11 GB	72.17	72.17
4	ViM-VQ	16	4	12 GB	72.31	72.31
	ViM-VQ	64	8	14 GB	72.34	72.34

Computation Overhead

•vs. Uniform Quantization (UQ):

- Achieves superior compression rates.

•vs. Vector Quantization (VQ):

- Reduces computational overhead.
- Maintains accuracy consistency between calibration and inference.

Summary

In this work,

- We propose ViM-VQ, an efficient post-training vector quantization method tailored for Visual Mamba networks (ViMs).
- We introduce a fast convex combination optimization to search for optimal codewords, and an incremental quantization to mitigate truncation errors.
- ViM-VQ achieves superior performance in low-bit quantization across various tasks.

Contact Me by E-mail:
dengjuncan@zju.edu.cn