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Three Key Factors

Three factors crucial for achieving domain generalization in registration

> —

1. Proper voxel size and 2. Robust keypoint detection 3. Input Scale
search radius for out-of-domain scenes normalization
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Three Key Factors

Three factors crucial for achieving domain generalization in registration

1. Proper voxel size and

search radius

Issue #1: Most approaches require manual tuning of voxel size and search radius by
users.
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Three Key Factors

Three factors crucial for achieving domain generalization in registration

2. Robust keypoint detection
for out-of-domain scenes

Issue #2: Learning-based keypoint extractor modules are empirically brittle to out-of-domain data.
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Three Key Factors

Three factors crucial for achieving domain generalization in registration

3. Input Scale
normalization

Issue #3: Directly feeding raw , Y, and 2z values into the network leads to strong in-domain dependency
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BUFFER-X: Multi-scale patch-based method for zero-shot registration

(a) Geometric bootstrapping (Sec. 4.1) (b) Multi-scale patch embedder (Sec. 4.2) (c) Hierarchical inlier search (Sec. 4.3)
Sampled points and patches Multi-scale features For each scale
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BUFFER-X: Multi-scale patch-based method for zero-shot registration
(Cont'd) —_
<>

% The highlighted part below addresses the issue above.

(a) Geometric bootstrapping (Sec. 4.1)
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BUFFER-X: Multi-scale patch-based method for zero-shot registration

(Cont'd)

Farthest point sampling

—> Input from source I Sampled point by farthest point sampling
. ’ Input from target O Neighboring points (or patch)
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% The highlighted part below addresses the issue above.
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BUFFER-X: Multi-scale patch-based method for zero-shot registration

(Cont'd)
&

% The highlighted part below addresses the issue above.
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(b) Multi-scale patch embedder (Sec. 4.2)

Multi-scale features

Sampled points and patches

Farthest point sampling

—> Input from source I Sampled point by farthest point sampling
== ’ Input from target O Neighboring points (or patch)

)

dy

by Mini-SpinNet

———
N ~————1

Sy

= i g
~ |Global scale. ¢

%)
(9]
O

S

Middle scale.

Mini-SpinNet

T T
| ST

SP

Local scale. [

Non-learning module

Learning-based module

e

C{ _ {@[6 RHXWXD .

]

ICVER

BUFFER-X: Multi-scale patch-based method for zero-shot registration
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—> Input from source I Sampled point by farthest point sampling
. ’ Input from target O Neighboring points (or patch)
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BUFFER-X: Multi-scale patch-based method for zero-shot registration

(¢) Hierarchical inlier search (Sec. 4.3

For each scale

i

Cross-scale consensus
maximization
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Intra-scale matching
Pairwise transformation
estimation

: — D
Non-learning module i = £ D
2 il = ﬁ[ER”X”XD.“'-B iy o IER
Learning-based module [-‘E{j ( £ {q"H' H . 2 } i97g { )

2 MBQ? Visual & Geometric
== Intelligence Lab.

Inliers 7 >' |

2

)

8

)

23 ==
SPARKiab III"



HONOLULY
uu[;gzu!% HAWAII

Experimental Results

| Env. | Indoor Outdoor Average

|Dataset |3DMatch 3DLoMatch ScanNet++1i ScanNet++F TIERS KITTI WOD KAIST MIT ETH Oxford rank

& | FPFH [63] + FGR [94] + (@) 62.53 15.42 77.68 92.31 80.60 98.74 100.00 89.80 74.78 91.87 99.00  9.55

ITrainedWith spvatch S BB I 2 5| FPFH [63] + Quatro [43] + &) 8.22 1.74 9.88 97.27 86.57 99.10 100.00 91.46 79.57 51.05 91.03  10.73
. - S | FPFH [63] + TEASER++ [77] +[@)| 52.00 13.25 66.15 97.22 73.13  98.92 100.00 89.20 71.30 93.69 99.34  10.00

Zero-shot inference ETH [Out. 30 m, §] —

3DMatch KITTT FCGF [22 88.18 40.09 72.90 88.69 5596 0.00 0.00 0.00 0.0 5498 0.00  15.00

. 35m =] A [Out.. 80 m, W] +@ 88.18 40.09 85.87 88.69 78.62 90.27 97.69 9291 92.61 5498 93.68  10.18

g \ . +@)+X 88.18 40.09 85.87 88.69 80.11 9441 97.69 93.55 93.04 5553 95.68  9.55

3DLoMatch 7 ‘ \\ v WOD Predator [32] 90.60 62.40 75.94 N/A NA NA NA NA NA NA NA 1573
e P TR T T L P 90.60 62.40 75.94 2981 5644 000 000 095 000 0.4 033 1455

N VRS YN 2 |+@+H 90.60 62.40 75.94 86.01 7574 7729 86.92 87.09 79.56 54.42 93.68  11.82
Sﬁﬁaglii:cﬁq L Y, /./ / / "[O}l‘fll'g()m - 2 | GeoTransformer [59] 92.00 75.00 91.18 N/A NA NA NA NA NA NA NA  14.00
e WS A T .é" +& 92.00 75.00 91.18 7.54 506 036 077 025 087 000 033  13.09
ScanNet++F> % 0yford 5 +@+_ 92.00 75.00 92.72 97.02 9299 9243 89.23 91.86 95.65 71.53 97.01  6.27
[fn., 7.0 m, R b  [out. 100 m, G§ ] 2 |BUFFER [5] 92.90 71.80 92.72 93.75 6230 000 1.54 050 696 97.62 0.66  10.45
TIERS KAIST g [+ 92.90 71.80 93.01 94.69 88.96 99.46 100.00 97.24 95.65 99.30 99.00  3.82

[In., 110 m, @WERIR] [Out, 240 m, & B8 ] A +e)+¥ 92.90 71.80 93.01 94.69 88.96  99.46 100.00 97.24 95.65 99.30 99.00  3.82
tgggggg—x (Ours) +gﬁ}§ft§:t ;;;g&?gansfoll:gimm PARENet [80] 95.00 80.50 90.84 N/A NJA NA NA NA NA NA NA 1327
+@ 95.00 80.50 90.84 43.75 621 0.18 077 075 130 140 1.66 1155

+@+X 95.00 80.50 90.84 87.95 7506 84.86 9231 86.44 8478 69.42 9336  8.82
IOurs with only 7, 93.38 71.69 93.10 99.60 90.80 99.82 100.00 99.05 95.65 99.30 99.34 3.00|

Ours 95.58 74.18 94.99 99.9( 93.45 _99.82 100.00 99.15 97.30 99.72_99.67 __1.55

(Unit: Success rate [%])
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Experimental Results (Cont'd)
Olrtdoor scenes acquired by I_F’EH[

which qualitatively demonstrate applicability across various sensors and diverse scenes

Source and target (input) BUFFER-X (Ours) Ground truth

~

= This video includes audio narration i \ g
~ ¥ Intelligence Lab. SPARKIlab

oy . a F o2 N .
Ry, Visual & Geometric K I I I I I
\




< HONDLULU
!&!%‘L%HHWHII

Experimental Results (Cont'd)
Indoor scenes acquired by W

which qualitatively demonstrate applicability across various sensors and diverse scenes

d

Source and target (input) BUFFER-X (Ours)
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Experimental Results (Cont'd)

Indoor scenes acquired by l

which qualitatively demonstrate applicability across various sensors and diverse scenes

Source and target (input) BUFFER-X (Ours)
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Experimental Results (Cont'd)
Indoor scenes acquired by *m

which qualitatively demonstrate applicability across various sensors and diverse scenes

10 m

and target (input) BUFFER-X (Ours) Ground truth
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Experimental Results (Cont'd)
Outdoor scenes acquired by m

which qualitatively demonstrate applicability across various sensors and diverse scenes

and target (input) BUFFER-X (Ours)
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Experimental Results (Cont'd)
Outdoor scenes acquired by & ﬂ

which qualitatively demonstrate applicability across various sensors and diverse scenes

Y g T e’ e B kb
1 1 1
70 m
! |
. 5 -
‘ ) > ¥ .\. 4 3.l : ‘% x"ﬁ
. N
, o AR
. A00m .
f i
and target (input) BUFFER-X (Ours) Ground truth
Py Visual & Geometric Etj I I.-
WK Intelligencelab.  SPARKIab II




s’/

Experimental Results (Cont'd)

Outdoor scenes acquired by
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which qualitatively demonstrate applicability across various sensors and diverse scenes
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Experimental Results (Cont'd)

+ Ablation studies are also provided

Learning-based keypoint detector

Impact of geometric bootstrapping vs. Farthest point sampling
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Impact of multi-scale

Local Middle G]obal|RTE [cm]] RRE[°]] Succ. rate [%]1T Hz T

v 6.57 2.15 84.06 5.61
v 5.87 1.85 93.38 5.47

v 6.06 1.91 93.57 5.49

v v 514 1.81 94.31 2.35
v 5.77 1.81 94.02 2.36

v v 5.78 1.81 94.62 2.33

v v 5.78 1.79 95.58 1.81

Ablation study of multi-scale design
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Conclusion

Key contribution #1:
Zero-shot registration pipeline
called BUFFER-X

(a) Geometric bootstrapping (Sec. 4.1) (b) Multi-scale patch embedder (Sec. 4.2) (c) Hierarchical inlier search (Sec. 4.3)
Sampled points and patches Multi-scale features For each scale
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Key contribution #2:
Comprehensive benchmark to
evaluate generalization capability

Trained with 3DMatch g

Zero-shot inference ETH [Out.30m, §]
3DMatch ;a’d* KITTI

[In., 3.5 111.E] [Out., 80 m, B/]
3DLoMatch "\-\\\, WOD
K No N [Out., 75 m, {i]

[In., 3.5 m, E]

b 0 MIT
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A |\ [Out., 100 m, g |
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Thank you!
More results in the paper
& code is available

GitHub code



