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Introduction:

0 Multimodal Large Language Models (MLLMs) have demonstrated
remarkable capabilities in document understanding. However, their
reasoning processes remain largely black-box, making it difficult to ensure
reliability and trustworthiness, especially in high-stakes domains such as
legal, financial, and medical document analysis.

0 Existing methods use fixed Chain-of-Thought (CoT) reasoning with
supervised fine-tuning (SFT) but suffer from catastrophic forgetting, poor
adaptability, and limited generalization across domain tasks.
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Comparison of different approaches for improving model's explainability
and transparency in MLLM-based document understanding.
0 We propose Docthinker, a rule-based Reinforcement Learning (RL)
framework for dynamic inference-time reasoning.
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linstead of relying on static CoT templates, \ourmodel autonomously refines reasoning strategies via policy learning, generating explainable intermediate results,
including structured reasoning processes, rephrased questions, regions of interest (Rol) supporting the answer, and the final answer. By integrating multi-objective
rule-based rewards and KL-constrained optimization, our method mitigates catastrophic forgetting and enhances both adaptability and transparency.
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Methods:

"o

“rephrase _question": " What acronym is visible on the banner
in the background of the image? ",

"bbox_2d": [70, 630, 167, 676],

“final answer": "TWU"
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TransVG [6] 50.1 54.0
0 DocThinker significantly improves generalization while producing more explainable and MAttNet [48] 523 60.5
human-understandable reasoning steps. %‘;1;?;154[51]4] 2421‘1 gg';
| Document-oriented Understanding General Multimodal Understanding TAMN [9] 77.8 80.8
MLLM | Res. | Data | st | Doc/Text | Chart | General VQA | Relation Reasoning DocThinker-7B 82.4
| | | DocVQA | TextCaps | TextVQA | DUDE | SROIE | InfoQA | F30k | VIW | GQA | OI | VSR
LLaVA-15-7B[22] | 336> | - |SFT| 0244 | 0597 | 0588 | 0290 | 0.136 | 0.400 | 0.581 | 0.575 | 0.534 | 0412 | 0572 .
LLaVA-15-13B[22] | 3362 | - |SFT| 0268 0.615 0617 | 0287 | 0.164 | 0426 | 0.620 | 0.580 | 0.571 | 0413 | 0590 Conclusion
SPHINX-13B[18] | 224> | - |SFT| 0.98 | 0551 0532 | 0000 | 0.071 | 0352 | 0.607 | 0558 | 0.584 | 0.467 | 0.613
VisCoT-7B [35] 2247 | 438k [ SFT | 0355 | 0610 | 0719 | 0279 | 0341 | 0356 | 0.671 | 0.580 | 0.616 | 0.833 | 0.682
VisCoT-7B [35] 336° | 438k | SFT | 0476 0.675 0775 | 0386 | 0470 | 0324 | 0.668 | 0558 | 0.631 | 0.822 | 0.614 O This paper introduced DocThinker, a reinforcement
Qwen2SVL-7B'[1] | 3362 | - | - | 0350 | 0642 | 0735 | 0202 | 0472 | 0325 | 0.603 | 0.556 | 0.455 | 0.347 | 0.616 X Lo
Qwen2.SVL-7BT[1] [ 15362 | - | - | 0773 | 0710 | 0792 | 0492 | 0708 | 0.663 | 0.685 | 0.604 | 0457 | 0.371 | 0.603 learning-based framework designed to enhance
Qwen2.SVL-7B* [1] | 336> | 4k | SFT | 0355 | 0658 | 0740 | 0215 | 0489 | 0334 | 0.624 | 0.563 | 0.467 | 0405 | 0.619 . . - . s s
Qwen2SVL-7B*[1] | 1536 | 4k | SFT | 0784 | 0725 | 0801 | 0498 | 0714 | 0.674 | 0680 | 0609 | 0472 | 0.427 | 0.624 explainability, adaptability, and reasoning ability in
DocThinker-3B 3362 | 4k | RL | 0460 | 0663 | 0746 | 0213 | 0486 | 0335 | 0.664 | 0572 | 0486 | 0.485 | 0.625 i i i
DocThinker-3B 15362 | 4k | RL | 0751 0.691 0762 | 0469 | 0735 | 0.566 | 0.682 | 0.583 | 0.490 | 0517 | 0.637 multimodal document understanding. DocThinker
DocThinker-7B 3362 | 4k | RL | 0579 | 0682 | 0802 | 0408 | 0495 | 0347 | 0.674 | 0.580 | 0546 | 0.542 | 0.656 i -of-the- i iti
DocThinker 78 1532 | 4k | RL | 0795 | 0738 | 0827 | 0515 | 0.806 | 0.689 | 0701 | 0.625 | 0.694 | 0.686 | 0.721 achieves state-of-the-art or highly competitive
DocThinker-7B 1532 | 8k | RL | 0.802 0.757 0836 | 0568 | 0.814 | 0.697 | 0.734 | 0.641 | 0.737 | 0.784 | 0.768 performance on standard benchmarks




