

DocThinker: Explainable Multimodal Large Language Models with Rule-based Reinforcement Learning for Document Understanding

Wenwen Yu¹, Zhibo Yang², Yuliang Liu¹, Xiang Bai^{1✉}

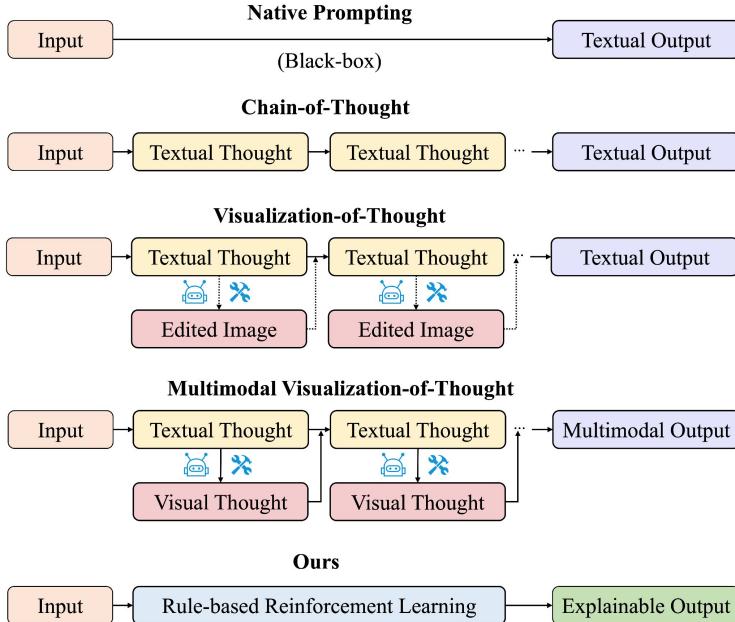
¹Huazhong University of Science and Technology, ²Alibaba Group

ICCV 2025

Presenter : Wenwen Yu

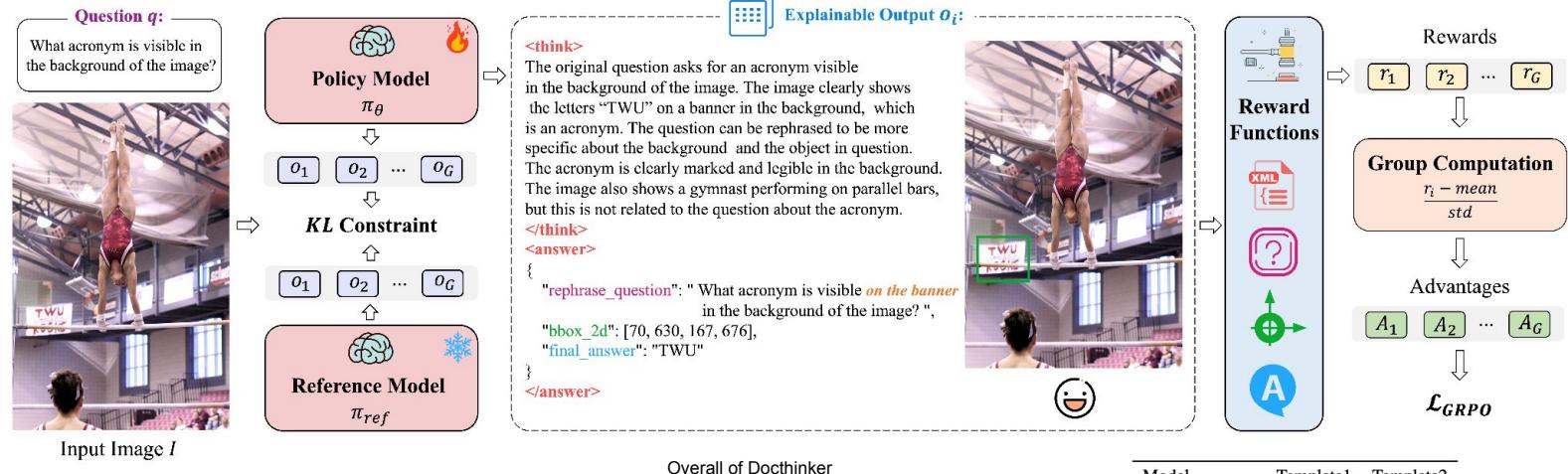

2025-10-22

DocThinker: Explainable Multimodal Large Language Models with Rule-based Reinforcement Learning for Document Understanding


Wenwen Yu¹ · Zhibo Yang² · Yuliang Liu¹ · Xiang Bai¹

¹Huazhong University of Science and Technology ²Alibaba Group

Introduction:


- Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in document understanding. However, their reasoning processes remain largely black-box, making it difficult to ensure reliability and trustworthiness, especially in high-stakes domains such as legal, financial, and medical document analysis.
- Existing methods use fixed Chain-of-Thought (CoT) reasoning with supervised fine-tuning (SFT) but suffer from catastrophic forgetting, poor adaptability, and limited generalization across domain tasks.

- We propose Docthinker, a rule-based Reinforcement Learning (RL) framework for dynamic inference-time reasoning.

Methods:

- Instead of relying on static CoT templates, our model autonomously refines reasoning strategies via policy learning, generating explainable intermediate results, including structured reasoning processes, rephrased questions, regions of interest (RoI) supporting the answer, and the final answer. By integrating multi-objective rule-based rewards and KL-constrained optimization, our method mitigates catastrophic forgetting and enhances both adaptability and transparency.

Experiments:

- DocThinker significantly improves generalization while producing more explainable and human-understandable reasoning steps.

MLLM	Res.	Data	Str.	Document-oriented Understanding					General Multimodal Understanding							
				Doc/Text					General VQA					Relation Reasoning		
				DocVQA	TextCaps	TextVQA	DUDE	SROIE	InfoQA	F30k	V7W	GQA	OI	VSR		
LLaVA-1.5-7B [22]	336 ²	-	SFT	0.244	0.597	0.588	0.290	0.136	0.400	0.581	0.575	0.534	0.412	0.572		
LLaVA-1.5-13B [22]	336 ²	-	SFT	0.268	0.615	0.617	0.287	0.164	0.426	0.620	0.580	0.571	0.413	0.590		
SPHINX-13B [18]	224 ²	-	SFT	0.198	0.551	0.532	0.006	0.071	0.352	0.607	0.558	0.584	0.467	0.613		
VisCoT-7B [35]	224 ²	438k	SFT	0.355	0.610	0.719	0.279	0.341	0.356	0.671	0.580	0.616	0.833	0.682		
VisCoT-7B [35]	336 ²	438k	SFT	0.476	0.675	0.775	0.386	0.470	0.324	0.661	0.558	0.631	0.822	0.614		
Qwen2.5VL-7B ¹ [1]	336 ²	-	-	0.350	0.642	0.735	0.202	0.325	0.603	0.556	0.455	0.347	0.616			
Qwen2.5VL-7B ¹ [1]	1536 ²	-	-	0.773	0.710	0.792	0.492	0.708	0.663	0.685	0.604	0.457	0.371	0.603		
Qwen2.5VL-7B ¹ [1]	336 ²	4k	SFT	0.355	0.658	0.740	0.215	0.489	0.334	0.624	0.563	0.467	0.405	0.619		
Qwen2.5VL-7B ¹ [1]	1536 ²	4k	SFT	0.784	0.725	0.801	0.498	0.714	0.674	0.680	0.609	0.472	0.427	0.624		
DocThinker-3B	336 ²	4k	RL	0.460	0.663	0.746	0.213	0.486	0.335	0.664	0.572	0.486	0.485	0.625		
DocThinker-3B	1536 ²	4k	RL	0.751	0.691	0.762	0.469	0.735	0.566	0.682	0.583	0.490	0.517	0.637		
DocThinker-7B	336 ²	4k	RL	0.579	0.682	0.802	0.408	0.495	0.347	0.674	0.580	0.546	0.542	0.656		
DocThinker-7B	1536 ²	4k	RL	0.795	0.738	0.827	0.515	0.806	0.689	0.701	0.625	0.694	0.686	0.721		
DocThinker-7B	1536 ²	8k	RL	0.802	0.757	0.836	0.568	0.814	0.697	0.734	0.641	0.737	0.784	0.768		

Conclusion

- This paper introduced DocThinker, a reinforcement learning-based framework designed to enhance explainability, adaptability, and reasoning ability in multimodal document understanding. DocThinker achieves state-of-the-art or highly competitive performance on standard benchmarks.