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' 01 Background and Significance

0,

The cost of treatment in the field of stomatology has
consistently remained high, with labor costs constituting
a significant portion of orthodontic treatment

procedures.

The dental medicine sector is undergoing industrial
transformation and upgrading through digitalization.
Many tasks previously reliant on manual labor can now
be accomplished using computer technologies such as

digital modeling and neural networks.

However, certain responsibilities, such as selecting
orthodontic treatment plans for patients, still require
dentists to apply professional knowledge and experience

through careful observation.




' 01 Background and Significance

e This work aims to design a neural network architecture that takes
intraoral scanner-derived segmented patient dental models as input

® Predict post-orthodontic treatment outcomes of fully aligned teeth.

The system assists orthodontists in clinical decision-making for
treatment planning while maximizing prediction accuracy.
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' 02 Related Work

EI TANet(Graph Neural Network+PointNet)

Uses PointNet to encode point cloud features from intraoral ‘
scanner segmented models, including both global and local VXY VY.
features.

Employs Graph Neural Networks to achieve connectivity
and communication between local tooth features.

000
Q o
°] o

Centers

Incorporates tooth center points and positional encoding.

Transformation
Regression

Utilizes an MLP decoder to regress 6-DoF information of A
teeth. L:ﬁ:';l?:; ion,

Normalization

Next Iteration
(in test time)

Limitations:

Unsatisfactory alignment prediction outcomes in
complex cases.

Loss function fails to fully exert its intended effect.

PointNet encoder exhibits deficiencies in extracting input predict ground truth
local features.
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[ ] TANet-Landmark Constraints and Hierarchical Graph Structure

Enhances TANet by computing four types of dental
landmarks as key tooth features.

Uses DGCNN to extract point cloud features and
constructs a three-level hierarchical graph neural network
(Landmark — Tooth — Jaw) for bottom-up feature
propagation.

Employs an MLP decoder to regress orthodontic
transformation parameters.

Limitations:

Performance heavily relies on landmark detection accuracy,
which depends on the completeness of intraoral scans and
segmentation.

Vulnerable to ambiguous landmark localization, significantly
affecting results.

Complex architecture leads to long computational runtime.
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[C] TADPM(Diffusion+Mesh-MSE)

Employs diffusion probabilistic models to learn the
transformation matrix distribution from malocclusion to normal
occlusion through a gradual denoising process of random
variables.

Utilizes standard self-attention modules for intermediate
feature propagation.

Final orthodontic transformation parameters are regressed via
MLP.

Limitations:

The multi-stage denoising structure leads to model
complexity, requiring extensive computational resources for
both training and inference.

Both MSE preprocessing and TADPM single-round training are
time-consuming, resulting in high computational costs.
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[ ] TAPoseNet(DGCNN+PointNet+GCN)

" "'k- - - “\\“.l //”f-“—\ --\\\‘“y
DGCNN for tooth pose learning g ["'- } IS P= 1 BCOH
Input i -_ wg é e
5 9 Sl 2 Transform
o ° E / \ E matrices
PointNet for local features + centroid features | —
Z g eonring ‘t:af‘v&y = |:| —E o o _._-_ 9, .. Target po:
: H [ z é\_sig —
Multi-scale GCN for spatial relationships ’ N ey B »
. ?f’g‘:{\jz.?ﬁ‘. m‘\:ﬂl&} \ ’ Oog\\/og -.--—_ Global :
MLP regression hosusr || = =4 |\ LXayeE=—== -
. e ey, ) p
The input point cloud

Limitations:
Small dataset with no augmentation

Oversimplified loss function

Dependent on tooth axis prediction

input predict ground truth
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Figure 3-2. The evolved sliding window and the optimized ST Block structure after
improvement
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E Feature Extraction & Upsampling

’
'

Dual feature extraction modules (global + local): LRSS
g‘/ '{k( Tooth
; 2 . . | Center

Encoder

MHA layers with positional encoding for
tooth centroids

Swin-T block sequence (SWTBS) for
UPSAMPlING

Swin Transformer Pipeline (SWTP) for 3D
point clouds

Hierarchical downsampling via sliding
windows
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Residual adding

r

SWTBS

e dof @

dof "trans |
g

)

dof \trans \
=9

— 3

dof [trans

| 6DoF l

ERHREEE SR MFEHRIURIR:

r—1 Feature Transfer &
Parameter Regression

Tooth cloud features (f t) merged with jaw
features (f c)
s Further feature exchange via SWTBS

* Residual collection for training optimization

e MLP decoder for 6-DoF parameter regression

» Tooth assembler module for final prediction
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: =| Local Feature Extraction

The maxillary and mandibular dental data each contain up to 16 teeth, with each
tooth sampled to 512 points. Each point has XYZ coordinate values, forming a 32 *

512 matrix with 3 channels.

SWTP is used for local feature extraction of tooth point clouds, consisting of four
stages. Each stage requires feature merging and downscaling.

During feature merging, only the data columns (the dimension of tooth point
cloud count) are merged, while the data rows remain unmerged.

This is because the height dimension represents the number of teeth, and there is
no shared feature space for merging across different teeth, as the final predictions
of rotation and translation are performed individually for each tooth rather than

collectively for multiple teeth.
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y

: =| Tooth Arch-Based Point Cloud Serialization

« Hermite curve-interpolated arch line from centroids
« Point sorting by signed distance to arch (labial: +, lingual: -)

« Maintains consistent relative positions among 512 points/tooth
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. >

Based on dental arch core line Based on dental arch center Based on distance to crown Random order

: =| Point Cloud Serialization Rules & Rationale

Uses nxn sampling windows (n teeth x n points/tooth)

- Sub-point clouds preserve global positional relationships

Serialization Function Test remult
ADD/AUCt ME/state ! MEians |  Sliding windows maintain inter-tooth spatial features
Random Order _ 0.7 6.1 1.9 Ablation studies validate arch-line-based serialization
Based on dental local z-axis 0.80 54 1.7 superiority (see table)
Based on dental arch center 0.82 5.6 1.3

Based on virtual arch line 0.89 2.7 1.1
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B¢ 100
%. ' @'

Uses BVH collision detection to check inter-tooth
collisions

Employs simulated dental arch line as avoidance
trajectory (preserves arch morphology + ensures normal
transformation range)

Sequential processing: incisors — molars with iterative
avoidance if constraints are violated

E Two constraints

o

¢

Applies jaw regularization constraints via dental arch line
during augmentation

after simple augmention after constraint

origin ground truth

Pulls adjacent teeth closer if gap exceeds normal range
(excluding missing teeth)

Repositions teeth beyond acceptable arch range inward to
normal position

Sequential processing: incisors — molars
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Insufficient augmented data fails to fulfill the purpose of supplementing the dataset, but more augmentation is not
always better. Excessively high ratio of augmented data reduces the network’s exposure to real data, leading to network
distortion.

To explore the optimal degree of data augmentation, we conducted ablation comparison experiments under consistent
parameters including epochs, batch size, and test set, using two methods: standard augmentation (during training phase)
and constrained augmentation (during pre-processing phase).

The left side shows constrained augmentation, where the independent variable is the ratio of augmented data to the
original total data volume. The right side shows standard augmentation, where the independent variable is the triggering
probability of augmentation during training. The dependent variable is the final test accuracy after training. '
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=

Occlusal projecting overlap Loss

. Occlusal projecting overlap Area
. Not in Occlusal projecting overlap Area
. Opposite tooth irrelevant area

Represents whether the occlusal area between
the predicted upper and lower jaws matches
the ground truth

Occlusal projection range refers to the point
cloud of the overlapping region between upper
and lower teeth from a top-down perspective

Larger discrepancy between the predicted
occlusal projection range and GT results in
greater loss value

n—1
. | N — pt . 1(m; < 1) _ i
I = Argrin lpi —pill, PiePt  x.(i) = {o (m > e let(z) X: (D)
PjEr g, i=0




' 03 Prediction of Tooth Arrangement

: =| Occlusal distance uniformity Loss

« Consistency and similarity of connection vectors between
corresponding points in the occlusal region

« During normal occlusion, the distance between corresponding points
in the upper and lower dental occlusal regions should be essentially
consistent to comply with the post-contact stress distribution rule

* Greater disparity in distances between corresponding points within
the occlusal projection area correlates with higher functional loss

« For the four anterior teeth, the uniformity of occlusion is directly
described using vectors formed by the dental centroid and the crown
vertex

ptor .
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predict ground truth [ predict ground truth

input predict ground truth input predict ground truth input predict ground truth

] Excessive gap between teeth [J Upper and lower jaw misalignment [} Complex misaligned teeth | Wisdom/missing teeth
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Malposition
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TANet Landmark TADPM Our

TAligNet
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Input

ection range consistency loss and occlusal distance

ion proj

These can be effectively addressed using occlus

uniformity loss constraints.

Misalignment of upper and lower incisors and malocclusion between the upper and lower jaws.

Solution

tion of relative

ICa

indow Transformer enables accurate identif
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tion combined with a slid

iza
positions between teeth.

Data serial

Incomplete tooth models, trident-shaped misalignment, and single-jaw interproximal misalignment.

Solution
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Comparisons with SOTA methods

« We reproduced the methods of TANet, PSTNet,
TAligNet, and Landmark, and conducted training and
testing.

« We compared the AUC, mean rotation error, and
mean translation error of other methods.

« We compared the curves of mean point distance.
After the mean point distance exceeds 2.5, all curves
approach 1, so only curves with k < 2.5 are shown in
the graph.

« Under different definitions of mean point distance,
the accuracy of our method is the highest.
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— Our

— TADPM

— Landmark
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— TAligNet

— TANet

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
Mean Pointwise Distance
Model ADD ~Jr ADD/AUC T MErotate Jr MEtrans ~L
Douwr  Drappm | Dowr Drappym | Dowr Drabppym | Dowr Drappm

TAligNet | 1.5307 1.3642 0.72 0.70 7.5461 7.8368 2.0392 1.9634
TANet 1.0075 1.0584 0.81 0.77 6.9274 7.2650 1.6815 1.8227
PSTN 1.5889 1.7199 0.71 0.68 8.6938 8.9145 2.2155 2.3512

Ptv3 1.2136 / 0.78 / 7.0663 / 1.7581 /
Landmark | 0.8139 0.9361 0.84 0.80 7.8277 4.1991 1.3764 1.7585
TADPM 1.1815 0.8451 0.76 0.83 7.7426 3.3478 1.7351 1.6861
Ours 0.6584 0.8115 0.89 0.84 2.7678 2.9338 1.1584 1.5904
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' 06 Summary and Prospect

Based on digital orthodontic solutions and related fields, this paper conducts in-depth and

comprehensive research and discussion. The work is summarized as follows:

Orthodontic Prediction Method:

A novel high-precision and efficient neural network method for tooth alignment prediction is proposed. Using a
Swin-T multi-level feature fusion architecture as the core, the method introduces tooth point cloud serialization
rules, improves the data augmentation mechanism, and designs an occlusion evaluation loss function.

Experimental results demonstrate its effectiveness and high prediction accuracy.

Technical Implementation:
The proposed framework effectively processes dental point cloud data and optimizes alignment prediction

through structured feature fusion and enhanced training strategies.

Experimental Validation:
Rigorous testing confirms that the method achieves superior performance in terms of prediction precision and

operational efficiency compared to existing approaches.
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Directions for Improvement of Orthodontic Treatment Plan Construction System:

Limitations and Improvement Ideas of Orthodontic Prediction Algorithm: Teeth with severe lateral distortion affect
the accuracy of serialization, and the algorithm does not support extraction prediction, focusing only on the final

orthodontic outcome.

Future improvements may involve refining the serialization method, adding extraction site prediction, and

leveraging iterative characteristics to optimize the network for predicting the entire treatment cycle.
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