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Example of Brain Tumor MRI Segmentation Task

* Medical image segmentation, especially brain tumor

MRI segmentation, is a core task in intelligent medical

significantly improve lesion localization accuracy and

.
0 B
-------------------------------------------------------------------------------------------------------------------------------------

]

|

]

]

|

]

: ]
diagnosis. Accurate segmentation results can l
3 ]
|

]

]

|

]

]

|

3D MRI Example




Y
’ HONOLULU
ICCY HAWARII

OCT19-23, 2025

1 Fundamentals of Brain Tumor MRI Segmentation« == + ¢

w=  CAPITAL NORMAL UNIVERSITY
——————————————————————————————————————————————————————————————— [ "

* Medical image segmentation, especially brain tumor

MRI segmentation, is a core task in intelligent medical * To reduce computational costs, 3D MRI scans are often

diagnosis. Accurate segmentation results can processed as 2D slices, which include images from the

significantly improve lesion localization accuracy and coronal, sagittal, and axial planes.
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2 Related Work

* Traditional Segmentation Algorithms

* Conventional methods based on thresholding and region growing

struggle to meet clinical requirements for accuracy and robustness.
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[lustration of Development Trends
in Brain Tumor MRI Segmentation Methods



ICOVylmL
2 Related Work I

Traditional Segmentation Algorithms

Conventional methods based on thresholding and region growing

N struggle to meet clinical requirements for accuracy and robustness.

CNN-Based Segmentation Algorithms

Convolutional neural network architectures represented by U-Net
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have achieved significant breakthroughs in brain tumor MRI
segmentation through their encoder—decoder structure and skip

connections, inspiring numerous improved variants.

[lustration of Development Trends
in Brain Tumor MRI Segmentation Methods
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Traditional Segmentation Algorithms

Conventional methods based on thresholding and region growing

struggle to meet clinical requirements for accuracy and robustness.

CNN-Based Segmentation Algorithms

Convolutional neural network architectures represented by U-Net
have achieved significant breakthroughs in brain tumor MRI
segmentation through their encoder—decoder structure and skip

connections, inspiring numerous improved variants.

Sequence-Based Segmentation Algorithms

With advances in natural language processing, sequence attention
models such as Transformer, LSTM, and Mamba have been
introduced into segmentation tasks. These models capture long-
range dependencies and global contextual relationships, further

enhancing the performance of brain tumor segmentation.
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2 Related Work

Region Growing \

* QI: However, existing 2D algorithms suffer

(1u\ltnng

from low accuracy, while 3D algorithms

incur high computational costs. What causes

Method

this gap?

MRI Bra.in Tumor
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* QI: However, existing 2D algorithms suffer

Clustering
L k from low accuracy, while 3D algorithms
ok Voo 5.
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oo incur high computational costs. What causes
%% ‘ this gap?
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MRI Brain Tumor e - L)
8lalad ,,:° Y * Al: There exist sequential correlations among . ¢ '
=

MRI slices! 2D algorithms struggle to capture
them, while 3D algorithms require extensive

computation.
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M-Net Brain Tumor MRI Sequential

Segmentation Framework
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Slice sequence along a

spec1ﬁc plane

* There exists spatial correlation among

MRI slices as a “temporal-like” sequence.é

* The position and size of lesions vary

continuously across slices due to spatial

i continuity.
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*Lu J, Ding H, Zhang S, et al.
M-Net: MRI Brain Tumor Sequential Segmentation Network via Mesh-Cast[J]. arXiv preprint arXiv:2507.20582, 2025.
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2TP
FP + 2TP + FN

 TP: True Positive TN: True Negative
 FP: False Positive FN: False Negative

Dice =

4
' « Hausdorff Distance (HD)
0
. - : max max
Dataset Method Training Sets Testing Sets ] Haus(A,B) = maX(SAES(A)(d(SA, S(B)))  spes(y(d(S S(A)))
Training  Valuation Testing i_ ____________________________________________________
Brals 2019 Segiizziii; : 327’428436 421?359 1;23:{) ' Each processed MRI volume has a size of :
Sequences Data | 11250 3750 3763 L 155 X 160 X 160, which is then divided into :
BraTs 2023 Slices Data 116250 38750 38905 155 two-dimensional slices of 160 X 160 '

e For each case, 15 consecutive slices are

Table 1. Data Number on BraTS 2019 and BraTS 2023 Datasets.

0

)

|

0

)

|

0

)

|

[

: i pixels.
:

:

: combined into a sequence including the
l
0
|




N
HONOLULU
1CCVE% i

(i #4556 b &

S5 CAPITAL NORMAL UNIVERSITY

3 Ablation Study

T Txcxﬁxw

ﬁ@ﬁ@ﬁ

“ Backward

Dice_score(%) Hausdorff95
WTT TCt ETT | WT]l TC|l ET|
Backbone(Slices) | 72.44G | 87.17 89.29 90.41 |1.3710 0.8875 0.7093

Transformer(Slices) 97 45G 87.24 89.30 90.29 | 1.3641 0.8791 0.6983

]
i
l
Module and Method | FLOPs] i
l
i
0 Fofward
Transformer(TPS) 87.56 89.96 90.79 | 1.3270 0.8354 0.6776 ﬁ ﬁ W
LSTM(SIi 87.59 89.78 90.56 | 1.3059 0.8454 06775 |
SIS [ ey [ B 9 i
l
l
l
l
l

l-
'||

LSTM(TPS) 88.06 89.97 90.73 | 1.2968 0.8340 0.6701
ConvLSTM(Slices) 132.31G 87.74 89.92 90.68 | 1.3290 0.8480 0.6905 ﬂmmmmmm W“;::m“:mmm -
ConvLSTM(TPS) 88.19 90.22 90.79 | 1.3071 0.8358 0.6883 - L o o
xLSTM(Slices) 93.56G 87.92 89.60 90.77 | 1.3090 0.8707 0.6717 m m m“‘“ mmm
xLSTM(TPS) 88.19 90.00 90.93 | 1.3040 0.8552 0.6689 o !
AT S I ) ey | R s il 20 2P it U0 r".:.::.:.::.:.::.:.::.:.::.:.::.:.::.:.:.::.:.::.:.::.:.::.:“
Mamba SSM(TPS) 88.38 90.52 91.43 [1.2869 0.8154 0.6571 |/ e mmmmmn——m—nmnm

i In horizontal comparisons, all variants of the

|

|

! H

i Mesh-Cast module and TPS training strategy
Table 2. Ablatlon Stlldy Of M‘Net WIth lefCl‘CIlt Sequentlal MOd' : COIltI'lbllte to Slgnlﬁcant perf()rmance
] H
|
|

els on BraTS 2019 DATASET.

i improvements.
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_ - - - . { In horizontal comparisons, all variants of the
Examples of Multi-sequential Module (TPS) segmentation results in the ablation ‘

study. From left to right: Flair modality, input image, Ground Truth (GT), and
segmentation results of different M-Net configurations.

Mesh-Cast module and TPS training strategy
contribute to significant performance :

i improvements.

-
G o
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l
]
l
: Dice _score(%)
= = — i Modal WT TC ET
Module and Method | FLOPs| |-~ ;CE”;EM( E)TT Wil TC, Efl_ |  Backbone (Ordered) 87.17 89.29 90.41
]
Backbone(Slices) | 72.44G | 87.17 89.29 90.41|1.3710 0.8875 0.7093 ' ﬂ‘ﬁe‘ (,? ?:fdg;d) . g;-gg gg-g? gg-gg
Transformer(Slices) 8724 8930 902913641 0.8791 0.6983 -Net (1+C, Ordered) ; : :
Transformer(TPS) IT45G | o756 89.96 90.79 | 13270 0.8354 06776 | Backbone (Shutfled) 88.21 90.11 90.86
- - ' ' - ' ' ) M-Net (T+C, Shuffled) 88.07 90.32 91.05
LSTM(Slices) | . -[87.59 89.78 90.56(13059 0.8454 06775 | M.Net (T+C. Ordereds Shuffled) | 88.10 90.27 91.29
LSTM(TPS) 88.06 89.97 90.73 | 1.2968 0.8340 0.6701 ! M-Net (T+C. TPS) 5538 90.53 9103
ConvLSTM(Slices) | . - |87.74 89.92 90.68[1.3290 0.8480 0.6905 | i
o ]
Cﬂn;Lsm@S) 23';9 3023 32'79 1'33; 3'2338 3'2383 iTable 3. Ablation study about TPS training strategy and Mesh-
xLSTM(Slices) 93.56G 19289, 17 1.3 8707 0.6717 1 gt Sequential Module on BraTS 2019 DATASET.
xLSTM(TPS) 88.19 90.00 90.93 [ 1.3040 0.8552 0.6689 !
Mamba SSM(Slices) | o o |88.05 90.21 90.65 | 13332 0.8465 07064 *___________ ...
Mamba SSM(TPS) | ~ 88.38 90.52 91.43 | 1.2869 0.8154 0.6571 | ess————————————

{ In horizontal comparisons, all variants of the i

Table 2. Ablation Study of M-Net with Different Sequential Mod-
els on BraTS 2019 DATASET.

Mesh-Cast module and TPS training strategy
t contribute to significant performance

t improvements.

. -
.
N RN E NN AR RN IR R RN AN AN AR NN SN NN NN AN NN ENEENENEEENEEEEEENAEEEEEEEEEEEEEEEEEEEEEEEEEEEEn®

r
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
|




":cv% HONOLULY
o o o o l__..DEHH-E:]'EUEE HHWH"
3 Comparison With Mainstream Algorithms @4 it ¢ &
Model | Year | FLOPs) | Inf Time(min)| Dice.score(%) Hausdorff95
WT1 TCY ETT WT, TC) ET)

UNet | 2015 | 321.19G 12:32 87.36/90.71 88.59/93.05 90.69/93.36 | 1.3582/1.1863 0.9076/0.7329 0.6897/0.6730
SegResNet | 2019 | 5.98G 10:54 87.89/90.55 89.58/92.99 91.14/92.65 | 1.2977/1.1987 0.8403/0.7282 0.6649/0.7118
TransUNet | 2021 | 237.83G 11:02 84.50/90.71 86.72/92.52 88.39/92.92 | 1.3911/1.1810 0.9300/0.7276 0.7396/0.6869
nnUNet | 2021 | 82.00G 97:67 87.81/90.34 90.23/92.74 90.96/92.37 | 1.2970/1.2100 0.8311/0.7358 0.6628/0.6722
Transnorm | 2022 | 253.25G 12:11 86.56/87.97 87.88/91.82 89.28/91.49 | 1.3414/1.2226 0.8952/0.7299 0.7102/0.7247
UNETR | 2022 150.71 18:31 85.29/88.35 87.16/89.16 89.54/91.43 | 1.3831/1.2427 0.9504/0.8926 0.7042/0.7211

Swin UNETR | 2022 | 136.80 21:33 88.16/91.11 88.85/93.20 90.86/93.42 | 1.3077/1.1629 0.9119/0.7088 0.6814/0.6631
MedNeXt |2023| 1.98G 29:42 87.55/89.91 89.18/92.82 90.45/92.85 | 1.3330/1.2160 0.8800/0.7303 0.6958/0.6953
SLf-UNet | 2024 | 534.73G 17:26 87.55/90.81 88.21/93.18 90.38/93.30 | 1.3273/1.1748 0.9032/0.7100 0.6871/0.6709
MedSAM | 2024 | 166.55G 30:19 85.39/88.55 87.90/91.55 88.20/90.30 | 1.4409/1.3155 0.9224/0.8003 0.7667/0.8153

Mamba UNet | 2024 | 72.44G 14:12 88.21/91.03 90.11/93.32 90.86/93.31 | 1.3061/1.1734 0.8235/0.7008 0.6750/0.6764

UKAN | 2024 6221G 19:43 87.39/90.64 89.50/93.04 91.20/93.14 | 1.2989/1.1862 0.8415/0.7234 0.6585/0.6824
M-Net | ours | 91.29G 15:33 88.38/91.33 90.52/93.55 91.43/93.42 | 1.2869/1.1534 0.8154/0.7069 0.6571/0.6600

Table 4. Comparison with The SOTA Methods on BRATS 2019 and BraTS-2023 Datasets.
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Key Models Comparison on BraTS 2023 Key Models Comparison on BraTs 2023 | iieeuiiessseeesaeresseremateasstenanEraastaaRNaRatanaA e naR N anAtanRNaRANanaA St naRenanAtannnanannnnns
(Normalized to UNet, Dice® x1.05 / HD951 x1.00) (Normalized to UNet, Dice T x1.0608 / HDO5 1 x 1.0206) s e e,
Dice-EF Oyce-TC Dice-E¥ Dice-TC

' Radar charts comparing M-Net with various mainstream models
on the BraTS 2023 and 2019 datasets demonstrate its nearly

comprehensive performance superiority.

HDA5SWT

* Combining qualitative and quantitative analyses, M-Net achieves
a well-balanced trade-off between accuracy and efficiency, '
validating the effectiveness of sequence-based MRI tumor

“..segmentation.

Tumor Cone
(TC)
Enhancing Tumor
- —[ETL _ -

\ Flair Gl M-DMetiours) UMt TransU et Transmorm SegReaMNet nnliMel UNETR Swin UNETR  MedMNeXi SLI-Lvet MedSAM Mamba UlNet  UKAMN Legend /

nnUNet — M-Net{ours)

Whole Tumor
(WT)
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M-Net introduces a new sequential perspective
to brain MRI segmentation tasks.

»  Addressing the neglect of inter-slice correlations
in existing brain tumor MRI segmentation

algorithms.
Key Models Comparison on BraTS 2023 Key Models Comparison on BraTS 2023
(Normalized to UNet, Dice® x1.05 / HD951 x1.00) (Normalized to UNet, Dice? x1.0608 / HD951 x1.0296)

Dice-EF ~DyceTC Dice-E¥V~ TT-DyceTC

»  Proposing the M-Net sequential segmentation
framework, which treats multi-modal MRI slices
as ‘temporal-like’ inputs.

HDISWT HDI5 WT

»  Introduces the Mesh-Cast module and TPS
strategy specifically designed for sequential

HD9STC _MOG5.ET HD95TC HOB5-ET

segmentation.
- UNet MambaUNet - UNet MambatNet
- nnUNet — M-Net{ours) nnUNet — M.Net(ours)

»  Experiments show that M-Net achieves state-of-
the-art performance on the BraTS 2019 and BraTS
2023 datasets.
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M-Net: MRI Brain Tumor Sequential Segmentation Network via Mesh-Cast

Jiacheng Lu - Hui Ding - Shiyu Zhang - Guoping Huo
#1852

Abstract

MRI tumor seg i a critical challenge in
medical imaging, where volumetric analysis faces unique
computational demands due to the complexity of 3D data.
The sparially sequenrial arrangement of adjacent MRI
slices provides valuable informarion that enhances segmen-
tation continuity and accuracy, yet this characteristic re- A .
mains underurilized in many existing models. The spa- S -
tial ¢ lations between ad)i MRI slices can be re-

garded as “temporal-like” daia, fo frame seq = Figure 1. Performance radar charts of M-Net and several main-

in video segmentation tasks. To bridge this gap, we pro- stream models on BraTS 2023/2019. The valoes in the charts are
pose M-Net, a flexible framework specifically designed for rescaled, with larger values indicating better
ial Amage g ion. M-Net introduces the novel -

[ Abstract )
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- - - - - - . - . - - - - - - - D D D D D P D D D = D - D D - - D e D - e - e - e - - the mhemu “temporal-like” spalml correlations between
MRI slices. Additionally, we define an MRI sequential input
patrern and design a Two-Phase Sequential (TPS) training
strategy, which first focuses on learning common panterns
across sequences before refining slice-specific fearure ex-
traction. This approach leverages temporal modeling tech-
nigues 1o preserve volumetric contextual information while
g the high compuwational cost of full 3D convolu-
tions, thereby enhancing the generalizability and robusiness
of M-Net in sequenrial segmentation tasks. Experiments on
the BraTS2019 and BraTS2023 datasets demonstrate that
M-Ner outperforms existing methods across all key metrics,

establishing itself as a robust solution for temporally-aware Figure 2. “Tempoaral-like" spatial correlations in MRI. For an MRI
MRI rumor Code is lable at https: shce neqmtu:e the position and size of the lesion change with spa-
N tial h h the seq of slices.

Y

* arXiv preprint:

* Lu J, Ding H, Zhang S, et al. M-Net: MRI Brain Tumor

ffgithub. com/CNU~-MedAI~Lab/M-Net.

Sequential Segmentation Network via Mesh-Cast[J].
arXiv preprint arXiv:2507.20582, 2025.

low interclass contrast. In recent years, deep learning(11])
D has achieved remarkable results in medical image segmen-
Accurate brain tumor seg; ion is ial for di tation. A key milestone was the UNet[29), a 2015 encoder-
di is and t lanning in medical imaging{22, decoder seg) ion network proposed by O. Ronneberger

S ¥

32]. However, brain tumor MRI images pose significant et al. Many subsequent studies have introduced improve-
challenges due to irregular tumor boundaries, varying loca- ments, such as CANet[14) and MIRAU-Net|!] with convo-
tions, lex textures, inconsi grayscale levels, and lutional attention, UKAN[20] with knowledge-aware net-

S
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Results on BraTS 2019 and BraTsS 2923
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4 Wit T r WTL ™o T

YIIN0T71 BSOS -omun 1353V1.186) 0IOMATRY 0669004700
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SeghoNet :m, 198G 030N B nwvms LTV OSM0TH2 0460 711N
TrsslNes | 2021 | WG, i |
TelNe |00 | 200G | 9967 DALY MW nwvm [ 12912500 04100708 0406722
T | 023 | 035G IR11 | SS6NI9T DANVIAS WIN9LA | 1 MIV1 306 OIS0 TN 079007247
» To address issues suchaslrrtgular boundaries and variable vaTR (22 s | l!’\‘llu FLIG16 B4 |1 I0VIMIT 0950401936 00711

Sein UNETR WlAlh? 230 .llﬂ 1" lImJS) ”Mu) | 10TV 0910 2088 0683404400

locations in MRI images, deep leaming -based segmentation

. ModNeX: | 2020 | 1980 ¥ (OSM WIMEE WA | (13100200 0xs00700 [
methods are widely used. SLIUNe |04 S73G| 1736 | KISSA0A1 SAZINLIS 058400 | IIDVLIME 0901007500 064700600
: i nnm'ss n’ml»’nmn 1AW 0923405000 028630.815)
TEIIM00 90114000 0869031 | 1306V11714 AXTIS0I 0675006064
Motivation nwiéfi?iwvf&’ﬁ)iiﬁh T;;l T2 OMIN0TIN SISO MO
3 TR0 WA TASLAT | I IMMILII GALANIW GASTLRMeS

'y 2 (a) Oupat g ey Tasce Sa reccieg Facawew Teacn Y Toacey '1

M-Net takes multi-modll MRI sequences as input and can mcorpom{c any temporal modclmg modulc

ts an der-decoder architecture with VMamba as the visual backbone, enabling joint modeling across both
channcl and sequence dimensions,

X = {x3,x3, ..., %z}
» Here, x, € R"*"*C represents a single multi-modal MRI slice, where ¢t € [1,T] denotes the frame index within the
slice seq ¢ (1.¢., the seq length),

Mesh-Cast Sequential Module and TPS Strategy

" B L N T [e—

Examplen of sogmensation rewaks from maliple methods from kit 1o nght Pl modality ispet smage, Geosnd Treh (GT),
e propumad Mo Net, and scgmneniahon temdis froes varun companson o goothes

ALETMNCTYS) S | W ‘” 10040 08050 ey
Mambe S308 S ) v 20 wes w2 ‘l‘ 10007 083 07004
Mamba SONTYS) 1 .“ I N0 | LIMe e Ll

Mesh-Cast and TPS interleave different temporal modules for multi-modal sequence modeling.
"% “The Mesh-Cast Sequential Module models the input sequences along both temporal and channel dimensions.
Xcnannet = Tramposelorwrd(xifqv(ov 1))' Xeeqg = TransposepacawaraXinannet. (0,1))

» While the TPS strategy facilitates soquence learning through a “disordered(shuffled)-to-ordered™ training scheme.

“temporal-like’ inputs.

- Maosb-Cant Seqaential Modsle Mesh-Cant Ablutn Study of M-Net with Dffcrest Soqucnsal Modeh
» Most approaches rely on either 2D or 3D models: 2D models o8 BaTS 2015 DATASET. Conclusion
fail to capture inter-slice dependencies, while 3D models - 2 § ot kol Vs nm':":“,‘:‘" or l—’:mn
demand excessive computational resources, making it difficult | ke BRI Rkeeions | T4 (017 ™ :7, i s ams M-Net introduces a new sequential perspective to brain MRI segmentation tasks.
to balance accuracy and efficiency. ' ™34 ‘b : ’1 _.’,"1 .‘1 AN T f 1 cOumimaegiiond | o7 o8 THIN W SR L0 N WY, | | T e el o = Tt A R Ee e B e e S SR B
3 [T AT £ Tl A e LS NN g s » Addressing the neglect of inter-slice correlations in DA I T etee
. e8eD = ae g‘ ERy = —crns=ss g e e VRl spmnion gt/ R - /D -
Appmach : . — o e L C-lsnh'mm'm,m,'rvu WOC 068|107 AN 0490 Ny ey -
— li———o— ComLSTWTTS [ W ﬂ‘ 1671 050 oAk \R - 1 \ ‘.. y
: ASTARGe) | (9w wew w7 10w oow asn » Propesing the M-Net sequential segmentation \ ey \ > o/
' framework, which treats multi-modal MRI slices as - - -
:
L}
L}
L]

7 Introduces the Mesh-Cast module and TPS strategy
specifically designed for sequential segmentation.

r »
slolola i, E

We propose a sequence segmentation model, M-Net.

» M-Net treats MRI slices as sequential inputs and employs a
temporal module to capture inter-slice dependencies.

» Jiacheng Luc >
jchengli foxmail com Y2
» Experiments show that M-Net achieves state-of-the-
art performance on the BraTS 2019 and BraTS 2023  »  Hui Ding: 3
datascts. dhsiG@cnuedacn  [@)VES
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Module and Method | FLOPs, | 2.ce-score(*%) sauioflh
WTt TCtT ETT | WTl TCl ET]

Backbone(Slices) 72.44G | 87.17 89.29 90.41 | 1.3710 0.8875 0.7093
Transformer(Slices) 97 45G 87.24 8930 90.29 | 1.3641 0.8791 0.6983
Transformer(TPS) 87.56 89.96 90.79 | 1.3270 0.8354 0.6776
LSTM(Slices) 106.65G 87.59 89.78 90.56 | 1.3059 0.8454 0.6775
LSTM(TPS) 88.06 89.97 90.73 | 1.2968 0.8340 0.6701
ConvLSTM(Slices) 132.31G 87.74 8992 90.68 | 1.3290 0.8480 0.6905
ConvLSTM(TPS) 88.19 90.22 90.79 | 1.3071 0.8358 0.6883
xLSTM(Slices) 93.56G 87.92 R89.60 90.77 | 1.3090 0.8707 0.6717
xLSTM(TPS) 88.19 90.00 90.93 | 1.3040 0.8552 0.6689
Mamba SSM(Slices) 91.29G 88.05 90.21 90.65|1.3332 0.8465 0.7064
Mamba SSM(TPS) 88.38 90.52 91.43 | 1.2869 0.8154 0.6571

Table 2. Ablation Study of M-Net with Different Sequential Mod-
els on BraTS 2019 DATASET.

ICCV

OCT19-23, 2025
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Dice _score(%)
wWwT TC ET

87.17 89.29 90.41

Model

Backbone (Ordered)
)
M-Net (T+C, Ordered
Backbone (Shuffled)
M-Net (T+C, Shuffled)

88.05 90.21 90.65
88.21 90.11 90.86

88.07 90.32 91.05 l

88.38 90.52 91.43

*

M-Net (T+C, TPS)

]

able 3. Ablation study about TPS training strategy and Mesh-
ast Sequential Module on BraTS 2019 DATASET.

Q
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..................................................................................................
* .

In horizontal comparisons, all variants of the
Mesh-Cast module and TPS training strategy
t contribute to significant performance

t improvements.
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l
|
l
: Dice _score(%)
— - — i Model WT TC ET
1Ce_SCore dUusao
Module and Method | FLOPs.. (re— oo —— o — i Backbone (Ordered) 87.17 89.29 90.41
Backbone(Slices) | 72.44G | 87.17 89.29 90.41 | 1.3710 0.8875 0.7093 ! Mot (TaC O 4305 9021 9065
Transformer(Slices) 87.24 8930 9029 | 13641 08791 0.6983 ! et L, rcere : ‘ ‘
Transformer(TPS) | " O | 87.56 89.96 90.79 | 13270 0.8354 06776 Backbone (Shuffled) 58.21 90.11 90.86
- " . - . . (]
M-Net (T+C, Shuffled 88.07 90.32 91.05
LSTM(Slices) | __|87.59 8978 90.56| 13059 0.8454 0.6775 | et wiiec) mmmrl
LSTM(TPS) " 88.06 89.97 90.73|1.2968 0.8340 0.6701 ! M-Net (T+C, TPS) $8.38 90.52 91.43
ConVLSTM(Sices) | . ., - |87.74 89.92 90.68 13290 08480 0.6905 | i
E ]
Sl U e Dm0 0P I Table 3. Ablation study about TPS training strategy and Mesh-
xLSTM(Slices) 93.56G 19289, 17 1.3 8707 0.6717 1 gt Sequential Module on BraTS 2019 DATASET.
xLSTM(TPS) 88.19 90.00 90.93 | 1.3040 08552 0.6689 !

'V « It seems that Shuffle performs better than Ordered S

E — so why do we still use the Ordered setting?

Table 2. Ablation Study of M-Net with Different Sequential Mod-
els on BraTS 2019 DATASET.

Mesh Cast module and TPS training strategy
t contribute to significant performance

t improvements.
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* Q2: It seems that Shuffle performs better than Ordered Dice_score(%)
Model WT TC ET

* — so why do we still use the Ordered setting?
Backbone (Ordered) 87.17 89.29 90.41

)
M-Net (T+C, Ordered 88.05 90.21 90.65
Backbone (Shuffled) 88.21 90.11 90.86
M-Net (T+C, Shuffled) 88.07 90.32 91.05'
&I ¢ M-Net (T+C, TPS) 88.38 90.52 9143

« A2: The frequency characteristics of sequential images

]

able 3. Ablation study about TPS training strategy and Mesh-

determine that each approach — Shuffle and
ast Sequential Module on BraTS 2019 DATASET.

Q

—-——-——-——-——-——-——-——-——-——-——-——-——-—1

Ordered — has its own advantages and disadvantages!

..................................................................................................
* .

In horizontal comparisons, all variants of the
Mesh-Cast module and TPS training strategy
t contribute to significant performance

t improvements.

. o
--------------------------------------------------------------------------------------------------

ettt |

Our future work will illustrate the reason.
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