L

Georgla School of Electrical and
ech COmputer Engineering

OuroMamba: A Data-Free Quantization Framework_l

E)r Vision Mamba Models

ICCV 2025

Akshat Ramachandran'’, Mingyu Lee'", Huan Xu!, Souvik Kundu?, Tushar Krishna!
*Equal Contribution

1Georgia Institute of Technology  2Intel Labs
Contact: akshat.r@gatech.edu



Diverse Space of AI Models
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Transformer-based Models
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State-Space Models
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A State Space contains the minimum number of variables that fully describe a system. It is a way to

mathematically represent a problem by defining a system's possible states.

A Visual Guide to Mamba: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state




The Two Core Equations of SSMs
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A Visual Guide to Mamba: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



Simplified SSM Model Representation

Continuous domain representation of SSMs

A Visual Guide to Mamba: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



Simplified SSM Model Representation
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A Visual Guide to Mamba: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



Selective SSM or S6
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Convert to discrete domain for LLMs!

A Visual Guide to Mamba: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state




Selective SSM or S6

State space equation
h(t) = A(t) ©h(t — 1) + B(t) ® u(t); o(t) = C(t)h(t)

Discretization
A(t) = 420 B(t) = Wa(u(t)); B(t) = BA(t)
A(t) = ST (u(t)A(t)pro3); C(t) = (We(2(1)))*




Transtformers’ Static Outlier Patterns
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Dynamic Activation Variations
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VMM activations exhibit dynamic inter-time-step channel variations
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Dynamic Activation Variations
[ VIM-S Layer 3 J
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‘ Dynamic variations across different activations too! ‘
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Shortcoming of Static Determination

| Overprovisioning for outliers during cahbratlonl

During Cal .1“3rat10n
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OuroMamba-Quant

Outlier List: {}

Input : Activation X (t) € RY*E, Static scale S?(t), Threshold 8, Refresh rate n oz cqn,

OQutlier list O, ; .. , Inlier and outlier bit-precision b, b9

Output: Quantized activation X (¢), Updated outlier list O ; 5+
if 1t % nrerresn == 0 then
‘ Olist = {¢'}
end
Sp (g) = ComputeScale(X (t)[:, c] V ¢ ¢ Oux)
if SP(t) > ST(¢) then
for each channel c in X (t) not in Oj;5; do
if maz(| X (t)[:,c|]|) > 6 then
O1ist = 0155 U{c}
end
end
end
I(t),0(t) = Separate(X(t), O1ist)
I,(t) = InlierQuant(I(t), S (t),bl)
O,(t) = OutlierQuant(O(t),b9)
Xq(t) =Merge(ly(t), O4(t))
return X, (t), O1ist

Inliers

Offline: Determine threshold to detect outliers and
inlier scale factor




OuroMamba-Quant

Input : Activation X (t) € RV *E, Static scale S?(t), Threshold 6, Refresh rate n oz cqn,
Outlier list O, ; ;. , Inlier and outlier bit-precision b%, b
Output: Quantized activation X (), Updated outlier list O ; o+
ift % n,crresn == 0 then
‘ O1isc = {(f’}

end

SD(‘{) = ComputeScale(X()[:, c] V ¢ ¢ Oug)

il 57 () > 57 (%) then , ,
for each channel c in X (t) not in O, do Outlier List: {1,11}
if maz(| X (t)[:,c|]|) > 6 then

Outlier List: {}

O1ist = 0155 U{c}
end
end

end

I(t),0(t) = Separate(X(t), O1ist)
I,(t) = InlierQuant(/(t), ST(t),bD)
O,(t) = OutlierQuant(O(t), b9)
X, (t) =Merge(I,(t), O4(t))

return X, (t), O1ist




OuroM amb a_Quant We must now identify which channel is

the outlier channel
Outlier List: {1,11}

Input : Activation X (t) € RV *E, Static scale S?(t), Threshold 6, Refresh rate n oz cqn,
Outlier list O, ; ;. , Inlier and outlier bit-precision b%, b
Output: Quantized activation X (), Updated outlier list O ; o+
ift % n,crresn == 0 then
‘ O1isc = {(f’}

end
SP(t) = ComputeScale(X (t)[:, c] V ¢ & Oyg)

if SY(t) > S'(t) then
for each channel c in X (t) not in Oj;;; do
if maz(| X (t)[:,c||) > 0 then
O1ist =015t U{c}
end
end

Outlier List: {1,3,11}

end

I(t),0(t) = Separate(X(t), O1ist)
I,(t) = InlierQuant(/(t), ST(t),bD)
O,(t) = OutlierQuant(O(t), b9)
X, (t) =Merge(I,(t), O4(t))

return X, (t), O1ist




OuroMamba-Quant

Input : Activation X (t) € RV *E, Static scale S?(t), Threshold 6, Refresh rate n oz cqn,
Outlier list O, ; ;. , Inlier and outlier bit-precision b%, b
Output: Quantized activation X (), Updated outlier list O ; o+
if 1t % nrerresn == 0 then
‘ Olist = {(f’}
end
Sp (g) = ComputeScale(X (t)[:, c] V ¢ ¢ Oux)
if SP(t) > S’(t) then
for each channel c in X (t) not in Oj;5; do
if maz(| X (t)[:,c|]|) > 6 then
O1ist = 0155 U{c}

end

nd
I(t),O(t) = Separate(X(t), O1ist)
I,(t) = InlierQuant(I(t), S (t),bl)
O,(t) = OutlierQuant(O(t),b?9)
X, (t) =Merge(J,(t), Oq(t))

return X (t), O1ist

Outlier List: {1,3,11}

end Outlier Quantization

Inlier Quantization




OuroMamba-Quant

Input : Activation X (t) € RV *E, Static scale S?(t), Threshold 6, Refresh rate n oz cqn,
Outlier list O, ; ., Inlier and outlier bit-precision b., b¢

a'“a

Output: Quantized activation X, (t). Updated outlier list O ; o+

iff % nrefresh = 0 then

‘ Orise = {éf’}

end
Sp (g) = ComputeScale(X (t)[:, c] V ¢ ¢ Oux)
if SP(t) > S’(t) then
for each channel c in X (t) not in Oj;5; do
if maz(| X (t)[:,c|]|) > 6 then
O1ist = 0155 U{c}
end
end
end
I(t),O(t) = Separate(X(t), O1ist)
I,(t) = InlierQuant(I(t), S (t),bl)
O,(t) = OutlierQuant(O(t),b9)
X (1) —merge(T, ), Oy ()
return X, (t), O1ist

Outlier List: {}




OuroMamba-Quant: W4A4 Hybrid GEMM
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OuroMamba-Quant: W4A4 Hybrid GEMM

Inlier

Quantize to INT4

Quantize to INT8

Qutlier

INT4 Quantized Inlier
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[NT4 |

INT8 GEMM
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Activations are partitioned across channels
and mapped to thread blocks, where each
block independently compares its assigned
channels against the threshold 6 to identify
outliers and updates the Oy,




OuroMamba-Quant: W4A4 Hybrid GEMM
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We pack two consecutive 4-bit inlier activations
into one byte, with outlier positions set to zero, and
leverage the INT4 tensor cores for inlier
GEMM.




OuroMamba-Quant: W4A4 Hybrid GEMM
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The outliers execute GEMM on INTS8 tensor cores.




OuroMamba-Quant: W4A4 Hybrid GEMM
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The outputs from the inlier and outlier GEMMs
are dequantized to FP16 and summed together.
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W4A4

Quantization Results

1 QMamba
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1 OuroMamba (Ours)
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Quantization Results for Diffusion Models

FP16 Baseline W4A4 QMamba W4A4 OuroMamba

Zigma: SSM-based diffusion model



End-to-End Latency Comparison
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Generalization to ViTs

W4A4 OuroMamba

W4AS8 OuroMamba

FP16 Baseline W4A8 Q—DIT

Text to image generation task
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