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3Preliminaries – Diffusion Models

𝑥! 𝑥"

𝑥! 𝑥"

𝑑𝐱 = 𝑓 𝐱, 𝑡 𝑑𝑡 + 𝑔 t 𝑑w
forward SDE

d𝐱 = f 𝐱, t − g! t ∇𝐱	log	p𝐱 𝐱 dt + g t d3w

backward SDE

Score Matching Objective

ℒ456 = 𝔼7 𝜆 𝑡 ⋅ 𝔼8! 9 𝑠: 𝐱, 𝑡 − ∇𝐱! log 𝑝7 𝐱 ;
;

Diffusion Process



4Preliminaries – Flat Minima Searching
Loss values at flat minima change 
more smoothly than sharp ones.

Flat minimum Sharp minimum

Loss landscape for 
train data 𝒟"#$%&

Loss landscape for test 
data 𝒟"'(" 

A slight shift from the gap 
between train and test sets



5Motivation – Flatness in Classification

Sh
arp

Flat

Train
Test

Missed

Robust

Sharp minima are prone to unseen input distribution.
Flat minima remain consistent under distribution shifts.

Robust

Missed



6Motivation – Flatness in Generative Model
Flat minima in the classification task show 

robustness to distribution shift.
Then, what happens if the generative model is flat?

﹖
Ide

al

Flat
𝑧 ∼ 𝒩(0, I)

Generative model

🤔



7

What is the role of the flatness of 
the Generative model?

Research Question



8Theoretical Results – Overview

∆-flat minima ℇ-distribution gap 
robustness
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ℇ
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Theorem 1
(Corollary 1)

!̂ #
!̂ #

!̂ #

Theorem 2
(Corollary 2)

• Theorem 1: bridges parameter perturbation to the data space.
• Theorem 2: links flatness to robustness in distribution space.



9Theoretical Results – Theorem 1

Remark
 

Perturbations in 𝜽-space translate to scaled pdfs in 𝐱-space and 
flat minima enable the generative model to perform well on them.

Theorem 1. A perturbed distribution
 

For a given prior distribution of 𝑝 𝐱  and the 𝜹-perturbed 
minimum, i.e., 𝜽 + 𝜹, the following 𝑝̂(𝐱) satisfies the equality:

𝑝̂ 𝐱 = exp −𝐼 𝐱, 𝜹 𝑝 𝐱



10Theoretical Results – Theorem 2

Remark
 

Flat generative model remains robust up to the maximum KL-
divergence between 𝑝 and 𝑝̂, implying that flatter generative 
models achieve broader coverage.

Theorem 2. Link from flatness to distribution gap
 

A δ-flat minimum achieves ℇ-distribution gap robustness, such 
that ℇ is upper-bounded as follows:

ℇ ≤ max
D8∼ E𝒫 𝐱;8,H

𝐷 𝑝||𝑝̂ .



11Experimental Results - Baselines
• Explicit method [SAM’21]
• SAM adopts the sharpness in the optimization objective [SAM’21]
• max

# !$%
ℒ(𝑤 +𝜖) − ℒ 𝑤 	 + ℒ 𝑤 	 + 	 ℎ 𝑤 &

&/𝜌&

• Implicit method [SWA’18, EMA’24]
• Averaging model parameters leads flat minima
• 𝑊',𝑊&,𝑊( : trained model with SGD.
• 𝑊)*+ : Averaged model of 𝑊',𝑊&,𝑊(.
• Finding flat minima results in better performance.

[SAM’21] P. Foret et al., “SHARPNESS-AWARE MINIMIZATION FOR EFFICIENTLY IMPROVING GENERALIZATION,” ICLR 2021.
[EMA’24] Li, Siyuan, et al. "Switch ema: A free lunch for better flatness and sharpness." arXiv, 2024.
[SWA’18] Izmailov, Pavel, et al. "Averaging weights leads to wider optima and better generalization." UAI, 2018.

Sharpness Loss at minima L2 Reg.



12Experimental Results – Flatness

LPF ↓ w/o +EMA +SWA

ADM 0.097 0.099 0.099

+IP 0.103 0.101 0.102

+SAM 0.063 0.063 0.063

While +SAM finds a flatter loss landscape explicitly,
empirical methods (+EMA, +SWA) shows less impact.
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ADM

+SAM+SWA

FID
Score

CIFAR10 LSUN-Tower FFHQ

T=20 T=100 T=20 T=100 T=20 T=100
ADM 34.47 8.80 36.65 8.57 30.81 7.53

+EMA 10.63 4.06 7.87 2.49 19.03 6.19
+SWA 11.00 3.78 8.72 2.31 17.93 5.49
IP 20.11 7.23 25.77 7.00 15.03 13.55

+EMA 9.10 3.46 7.66 2.43 11.72 4.00
+SWA 9.04 3.07 8.55 2.34 12.99 3.54
SAM 9.01 3.83 16.02 4.79 11.59 5.29
+EMA 7.00 3.18 6.66 2.30 11.41 5.04
+SWA 7.27 2.96 6.50 2.27 12.15 4.17

Experimental Results – Full Precision

SAM (+EMA, +SWA) achieves comparable or better FID score.



14Experimental Results – Low Precision

FID
Score

T=20 T=100
32 bit 8 bit 32 bit 8 bit

ADM 34.47 48.02
(+13.65) 8.80 12.78

(+3.98)

+EMA 10.63 20.65
(+10.02) 4.06 7.36

(+3.3)

+SAM 9.01 8.94
(-0.07) 3.83 4.02

(+0.19)

+SAM+EMA 7.00 7.20
(+0.2) 3.18 3.12

(-0.06)

SAM (+EMA) shows robustness to 8-bit quantization.
SAM raises robustness to quantization, 

which is essential for model deployment.

T: sampling steps



15Experimental Results – Low Precision
4-
bi
t

8-
bi
t

32
-b
it

ADM

34.47

+IP +SAM

20.11

8.94

9.01

263.51

48.02

202.33

22.16

41.45

While ADM and +IP collapse in 4-bit quantization,
SAM maintains the image generation performance.



16Experimental Results – Exposure Bias

The iterative process in DMs results in error accumulation.
The accumulation of errors is referred to as exposure bias. [IP’23]

Denoising trajectory

𝑡 = T 𝑡 = 0

Trajectory with
error accumulation

[IP’23] Ning, Mang, et al. "Input perturbation reduces exposure bias in diffusion models." ICML, 2023.



17Experimental Results – Exposure Bias

Flat minima show robustness to Exposure bias,
where +SAM shows closer behavior with Training.
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