
Understanding Flatness in Generative Models: Its Role and Benefits

Taehwan Lee*, Kyeongkook Seo*, Jaejun Yoo**, Sung Whan Yoon**

Ulan National Institute of Science and Technology (UNIST)
South Korea

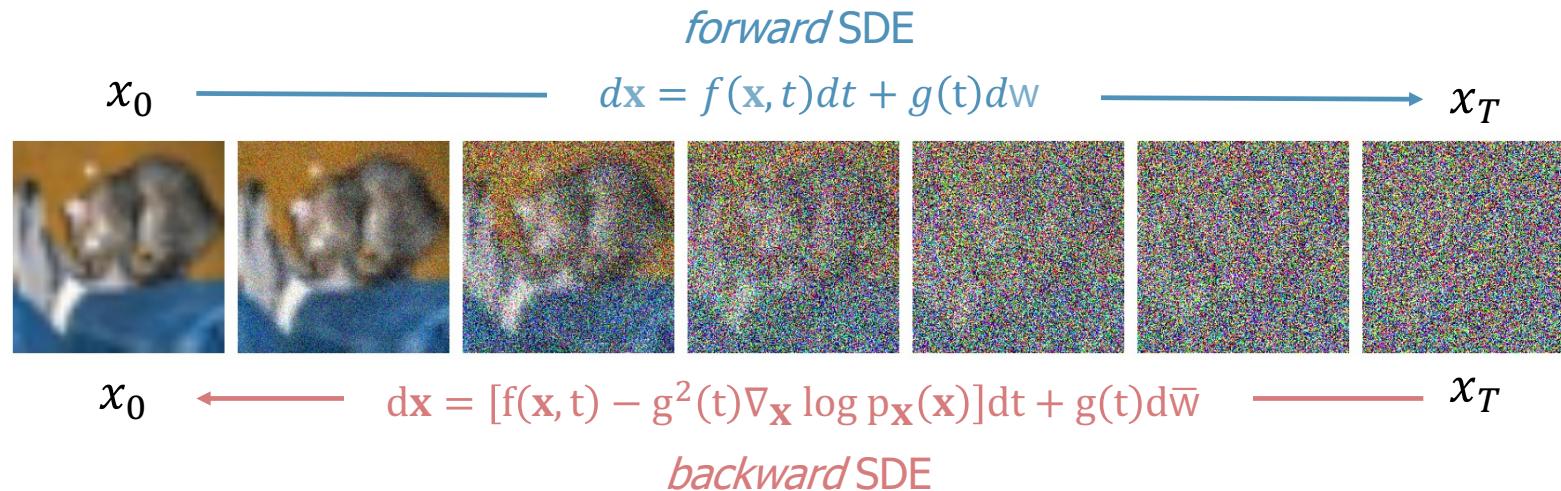
Outline

2

1. Preliminaries
2. Motivation
3. Theoretical Analysis
4. Experimental Results

Preliminaries – Diffusion Models

Diffusion Process

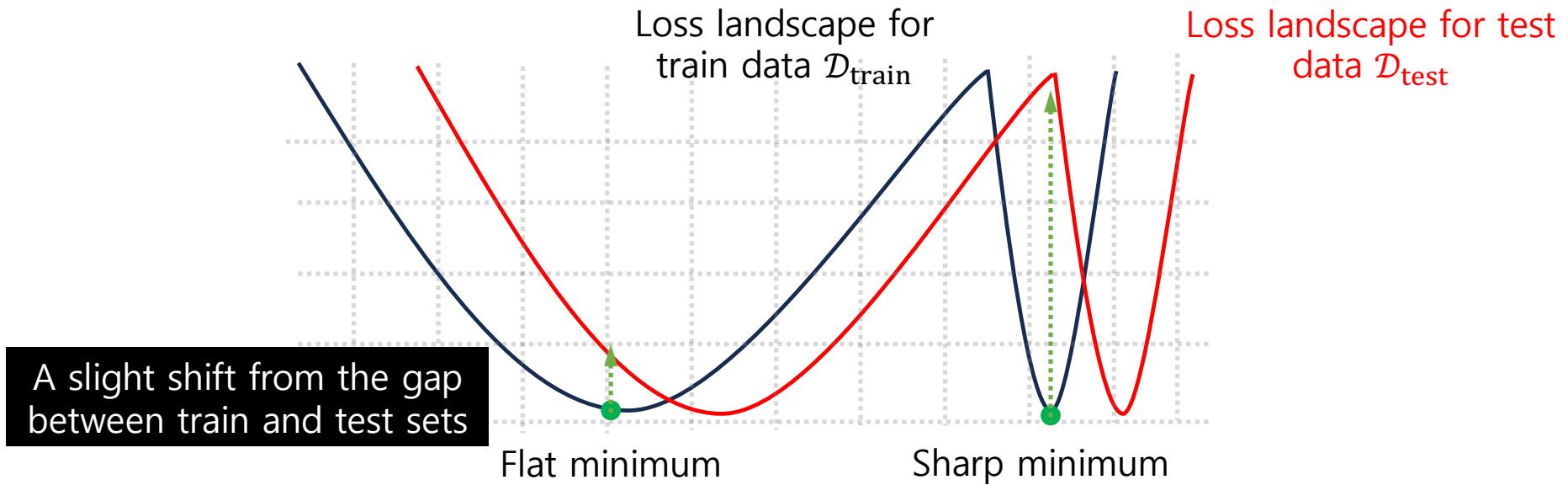


Score Matching Objective

$$\mathcal{L}_{SGM} = \mathbb{E}_t \left[\lambda(t) \cdot \mathbb{E}_{p_t(x)} \left[\left\| s_{\theta}(\mathbf{x}, t) - \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}) \right\|_2^2 \right] \right]$$

Preliminaries – Flat Minima Searching

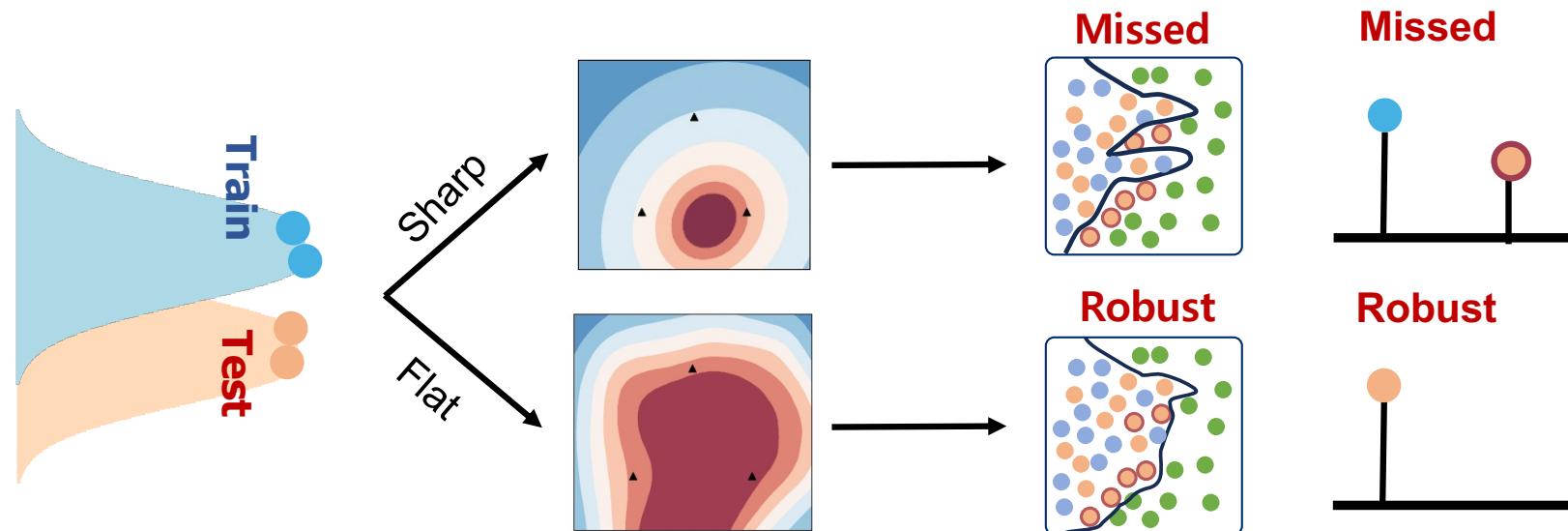
Loss values at flat minima change more **smoothly** than sharp ones.



Motivation – Flatness in Classification

Sharp minima are prone to unseen input distribution.

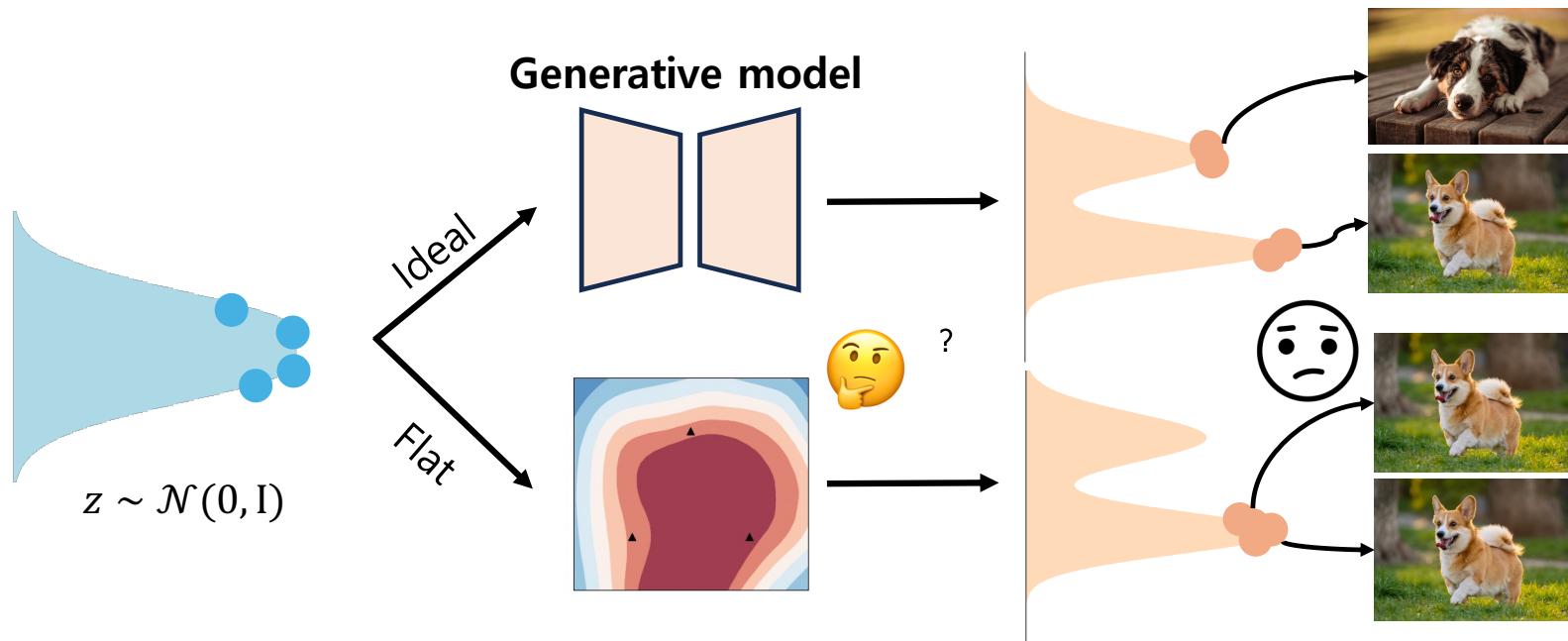
Flat minima remain consistent under distribution shifts.



Motivation – Flatness in Generative Model

Flat minima in the classification task show robustness to distribution shift.

Then, what happens if the generative model is flat?

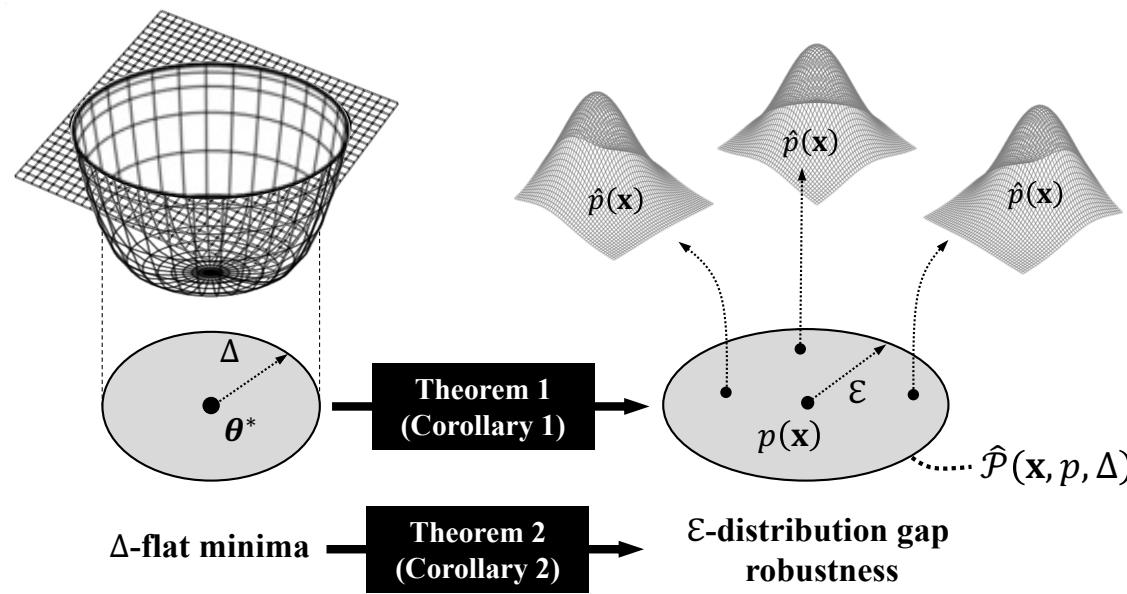


Research Question

7

What is the role of the flatness of the Generative model?

Theoretical Results – Overview



- **Theorem 1:** bridges parameter perturbation to the data space.
- **Theorem 2:** links flatness to robustness in distribution space.

Theoretical Results – Theorem 1

9

Theorem 1. A perturbed distribution

For a given prior distribution of $p(\mathbf{x})$ and the δ -perturbed minimum, i.e., $\boldsymbol{\theta} + \boldsymbol{\delta}$, the following $\hat{p}(\mathbf{x})$ satisfies the equality:

$$\hat{p}(\mathbf{x}) = \exp(-I(\mathbf{x}, \boldsymbol{\delta})) p(\mathbf{x})$$

Remark

Perturbations in $\boldsymbol{\theta}$ -space translate to scaled pdfs in \mathbf{x} -space and flat minima enable the generative model to perform well on them.

Theoretical Results – Theorem 2

10

Theorem 2. Link from flatness to distribution gap

A δ -flat minimum achieves ε -distribution gap robustness, such that ε is upper-bounded as follows:

$$\varepsilon \leq \max_{\hat{p} \sim \hat{\mathcal{P}}(\mathbf{x}; p, \Delta)} D(p \parallel \hat{p}).$$

Remark

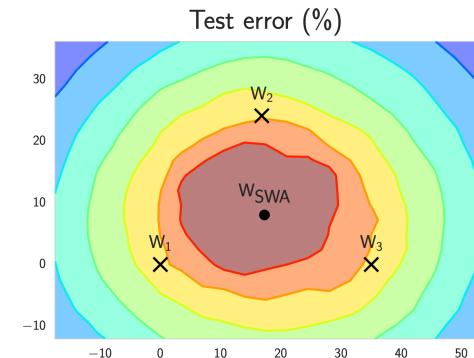
Flat generative model remains robust up to the maximum KL-divergence between p and \hat{p} , implying that flatter generative models achieve broader coverage.

Experimental Results - Baselines

- Explicit method [SAM'21]
 - SAM adopts the sharpness in the optimization objective [SAM'21]
 - $$\left[\max_{\|\epsilon\|_2 \leq \rho} \mathcal{L}(w + \epsilon) - \mathcal{L}(w) \right] + \mathcal{L}(w) + h(\|w\|_2^2 / \rho^2)$$

Sharpness
Loss at minima
L2 Reg.

- Implicit method [SWA'18, EMA'24]
 - Averaging model parameters leads flat minima
 - W_1, W_2, W_3 : trained model with SGD.
 - W_{SWA} : Averaged model of W_1, W_2, W_3 .
 - Finding flat minima results in better performance.



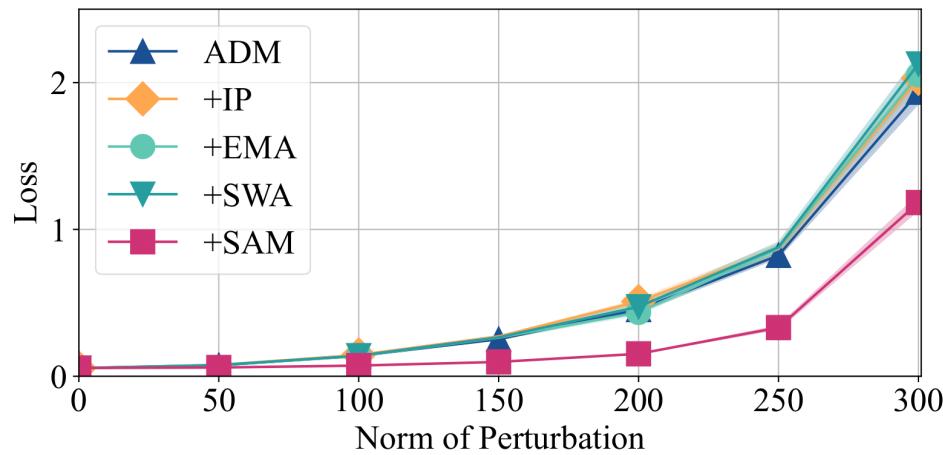
[SAM'21] P. Foret et al., "SHARPNESS-AWARE MINIMIZATION FOR EFFICIENTLY IMPROVING GENERALIZATION," ICLR 2021.

[EMA'24] Li, Siyuan, et al. "Switch ema: A free lunch for better flatness and sharpness." arXiv, 2024.

[SWA'18] Izmailov, Pavel, et al. "Averaging weights leads to wider optima and better generalization." UAI, 2018.

Experimental Results – Flatness

12

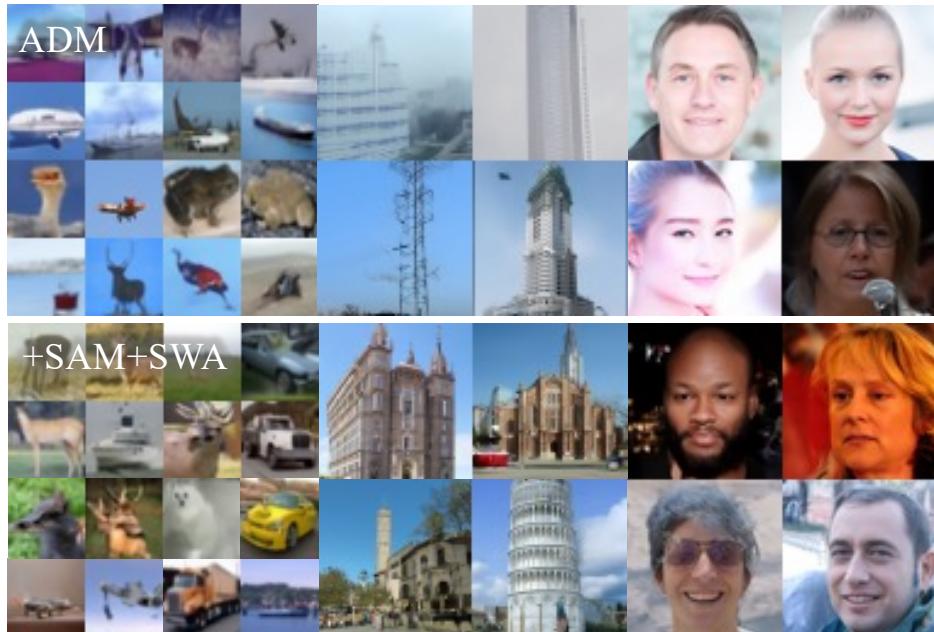


LPF ↓	w/o	+EMA	+SWA
ADM	0.097	0.099	0.099
+IP	0.103	0.101	0.102
+SAM	0.063	0.063	0.063

While **+SAM** finds a flatter loss landscape **explicitly**, empirical methods (**+EMA**, **+SWA**) shows less impact.

Experimental Results – Full Precision

13



FID Score	CIFAR10		LSUN-Tower		FFHQ	
	T=20	T=100	T=20	T=100	T=20	T=100
ADM	34.47	8.80	36.65	8.57	30.81	7.53
+EMA	10.63	4.06	7.87	2.49	19.03	6.19
+SWA	11.00	3.78	8.72	2.31	17.93	5.49
IP	20.11	7.23	25.77	7.00	15.03	13.55
+EMA	9.10	3.46	7.66	2.43	11.72	4.00
+SWA	9.04	3.07	8.55	2.34	12.99	3.54
SAM	9.01	3.83	16.02	4.79	11.59	5.29
+EMA	7.00	3.18	6.66	2.30	11.41	5.04
+SWA	7.27	2.96	6.50	2.27	12.15	4.17

SAM (+EMA, +SWA) achieves comparable or better FID score.

Experimental Results – Low Precision

14

FID Score	T=20		T=100	
	32 bit	8 bit	32 bit	8 bit
ADM	34.47	48.02 (+13.65)	8.80	12.78 (+3.98)
+EMA	10.63	20.65 (+10.02)	4.06	7.36 (+3.3)
+SAM	9.01	8.94 (-0.07)	3.83	4.02 (+0.19)
+SAM+EMA	7.00	7.20 (+0.2)	3.18	3.12 (-0.06)

SAM (+EMA) shows robustness to 8-bit quantization.
SAM raises robustness to quantization,
which is essential for model deployment.

T: sampling steps

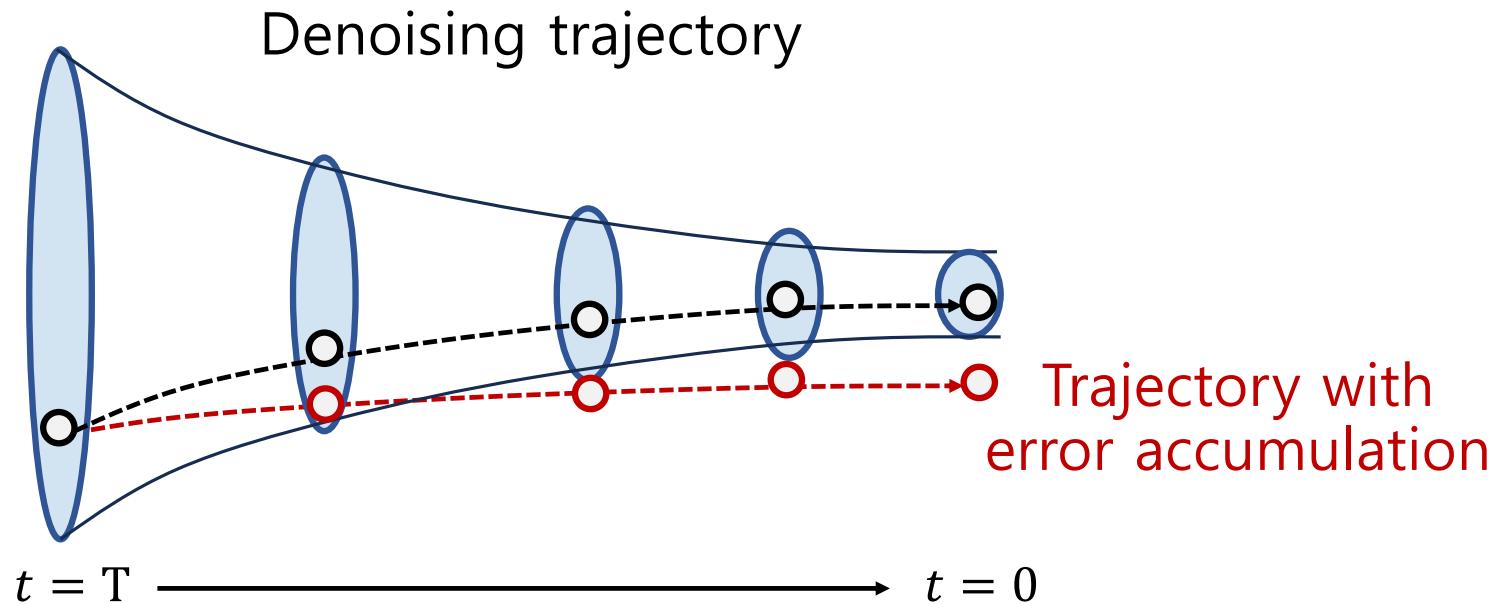
Experimental Results – Low Precision

15

While ADM and +IP collapse in **4-bit quantization**,
SAM maintains the image generation performance.

Experimental Results – Exposure Bias

16

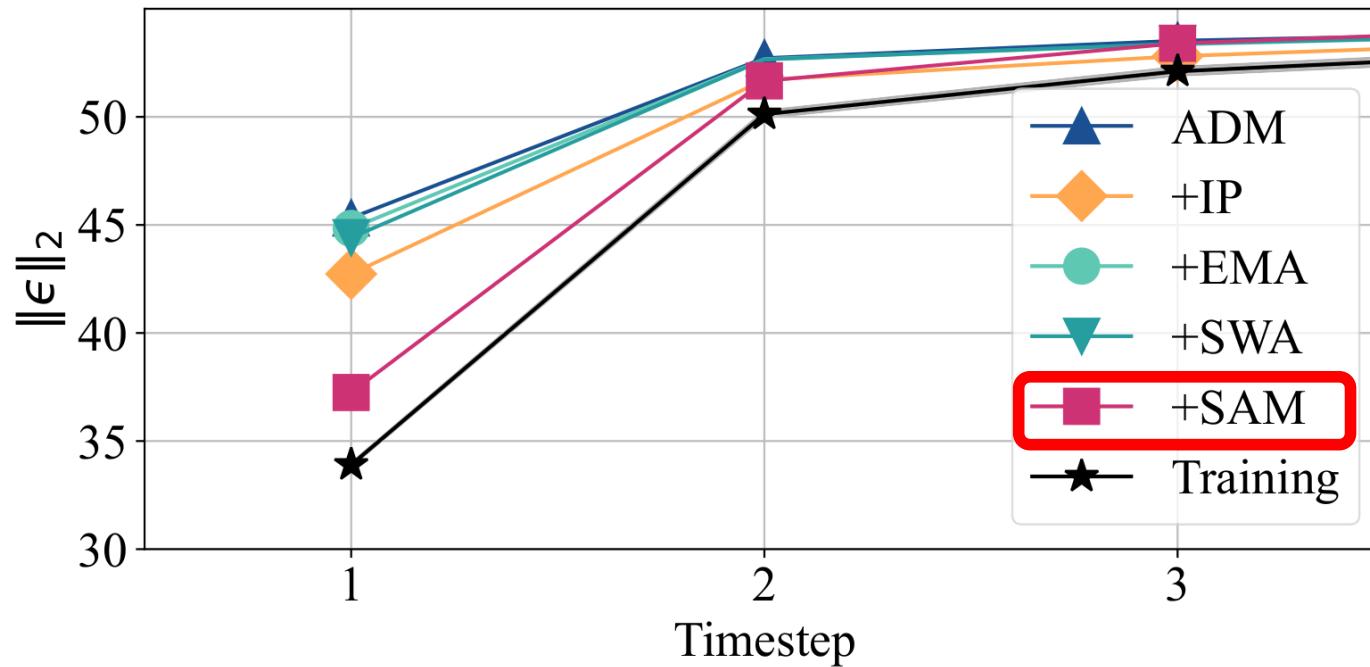


The iterative process in DMs results in error accumulation.

The accumulation of errors is referred to as exposure bias. [IP'23]

Experimental Results – Exposure Bias

17



Flat minima show robustness to **Exposure bias**,
where **+SAM** shows closer behavior with **Training**.

THANK YOU

Our paper will be presented in the poster session at Exhibit Hall I #461
on Tuesday, Oct. 21st, at 11:45 a.m. ~ 1:45 p.m.
Please visit our poster booth and have a discussion.

FIRST IN CHANGE