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Preliminaries — Diffusion Models

Diffusion Process
forward SDE

dx = f(x,t)dt + g(t)dw > XT

Xg +—— dx=[f(xt) — g2(t)Vx log px(x)]dt + g(t)dn ——— XT
backward SDE

Score Matching Objective

Lsem = Eq [A(t) Epo) [”SG (x,t) — Vx, logpt(X)HEH
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Preliminaries — Flat Minima Searching

Loss values at flat minima change
more smoothly than sharp ones.

Loss landscape for Loss landscape for test
train data Dipain data Diest

A slight shift from the gap
between train and test sets
Flat minimum Sharp minimum
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Motivation — Flatness in Classification I

Sharp minima are prone to unseen input distribution.
Flat minima remain consistent under distribution shifts.
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Motivation — Flatness in Generative Model I

Flat minima in the classification task show
robustness to distribution shift.

Then, what happens if the generative model is flat?

Generative model
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Research Question

What is the role of the flathess of
the Generative model?
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Theoretical Results — Overview

A-flat minima Theorem 2 E-distribution gap
(Corollary 2) robustness

* Theorem 1: bridges parameter perturbation to the data space.
* Theorem 2: links flatness to robustness in distribution space.
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Theoretical Results — Theorem 1

Theorem 1. A perturbed distribution

For a given prior distribution of p(x) and the §-perturbed
minimum, i.e., 8 + 8, the following p(x) satisfies the equality:

p(x) = exp(—I(x,8)) p(x)

Remark

Perturbations in @-space translate to scaled pdfs in x-space and
flat minima enable the generative model to perform well on them.
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Theoretical Results — Theorem 2

Theorem 2. Link from flatness to distribution gap

A 6-flat minimum achieves E-distribution gap robustness, such
that € is upper-bounded as follows:

€< max D(pl|p).
p~P(x;p,A) PP

Remark

Flat generative model remains robust up to the maximum KL-
divergence between p and p, implying that flatter generative
models achieve broader coverage.
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Experimental Results - Baselines

* Explicit method [SAM'21]
« SAM adopts the sharpness in the optimization objective [SAM21]
y [max L(w +é€) —L(W)] +Lw) + h(lwll3/p*)

lellz<p

Sharpness L2 Reg.

 Implicit method [SWA'18, EMA'24] —
* Averaging model parameters leads flat minima P N

o Wy, W,, W5 : trained model with SGD. . x
* Wswa : Averaged model of Wy, W,, Ws. . .
 Finding flat minima results in better performance. . X X

[SAM'21] P. Foret et al., "SHARPNESS-AWARE MINIMIZATION FOR EFFICIENTLY IMPROVING GENERALIZATION,” ICLR 2021.
[EMA'24] Li, Siyuan, et al. "Switch ema: A free lunch for better flatness and sharpness." arXiv, 2024.
[SWA’18] Izmailov, Pavel, et al. "Averaging weights leads to wider optima and better generalization." UAI, 2018.
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Experimental Results — Flatness

2] LPF | w/o +EMA +SWA

; ADM 0.097 0.099 0.099
=1 +IP 0.103 0.101 0.102
+SAM 0.063 0.063 0.063

0 50 100 150 200 250 300
Norm of Perturbation

While +SAM finds a flatter loss landscape explicitly,
empirical methods (+EMA, +SWA) shows less impact.
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Experimental Results — Full Precision

FID CIFAR10 LSUN-Tower FFHQ
Score |1 o) T—100 | T=20 T=100 | T=20 T=100

ADM | 34.47 8.80 36.65 8.57 30.81 7.53
+EMA | 10.63 4.06 7.87 2.49 19.03 6.19
+SWA | 11.00 3.78 8.72 231 17.93 5.49

IP 20.11 7.23 25.77 7.00 15.03  13.55
+EMA | 9.10 3.46 7.66 243 11.72 4.00
+SWA | 9.04 3.07 8.55 2.34 1299  3.54

SAM (+EMA, +SWA) achieves comparable or better FID score.
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Experimental Results — Low Precision

FID T=20 T=100
Score 32 bit 8 bit 32 bit 8 bit
48.02 12.78
ADM 34.47 (+13.65) 8.80 (+3.98)
20.65 7.36
+EMA 10.63 (+10.02) 4.06 (+3.3)

+SAM

4.02
(+0.19)

+SAM+EMA

SAM (+EMA) shows robustness to 8-bit quantization.

3.12
(-0.06)

SAM raises robustness to quantization,
which is essential for model deployment.

T: sampling steps
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Experimental Results — Low Precision I
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32-bit

+]P +SAM

While ADM and +IP collapse in 4-bit quantization,
SAM maintains the image generation performance. —




Experimental Results — Exposure Bias

Denoising trajectory
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error accumulation

t=T » t =0

The iterative process in DMs results in error accumulation.
The accumulation of errors is referred to as exposure bias. [IP'23]

[IP"23] Ning, Mang, et al. "Input perturbation reduces exposure bias in diffusion models." ICML, 2023. NisT




Experimental Results — Exposure Bias

501 —A&— ADM
_|_
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Timestep
Flat minima show robustness to Exposure bias,

where +SAM shows closer behavior with Training.
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