

# Scaling Language-Free Visual Representation Learning

David Fan\*, Shengbang Tong\*, Jiachen Zhu, Koustuv Sinha, Zhuang Liu,  
Xinlei Chen, Michael Rabbat, Nicolas Ballas, Yann LeCun, Amir Bart, Saining Xie†

FAIR, Meta, New York University, Princeton University



ICCV 2025 Highlight



# Current State of Visual Representation Learning

# Current State of Visual Representation Learning

Self-Supervision:

Language-Supervision:

# Current State of Visual Representation Learning

## Self-Supervision:

- E.g. MoCo, MAE, DINO

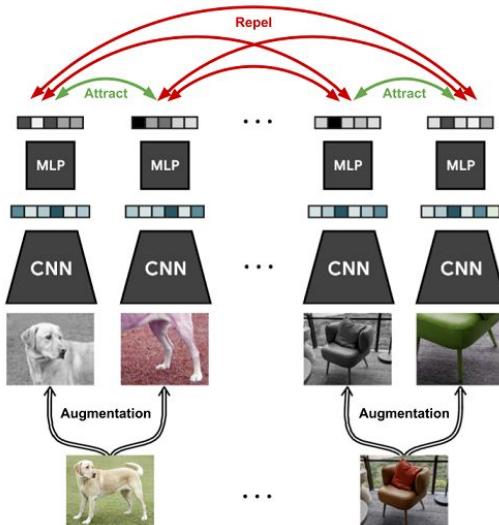
## Language-Supervision:

- E.g. CLIP, SigLIP, MetaCLIP

# Current State of Visual Representation Learning

## Self-Supervision:

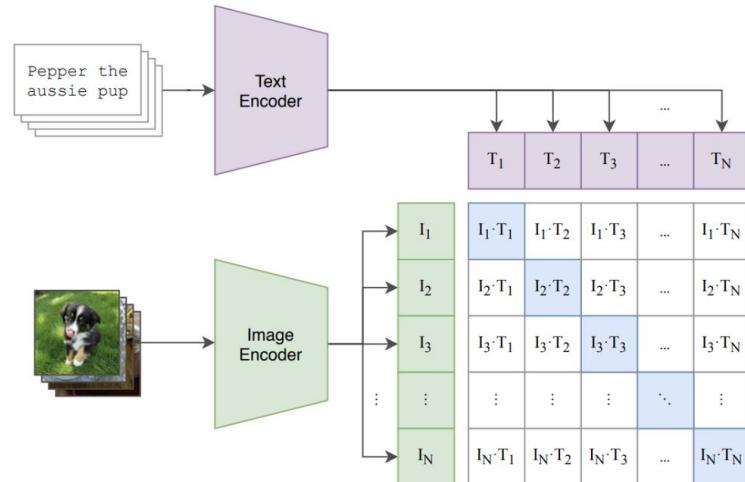
- E.g. MoCo, MAE, DINO
- Learning from images directly (e.g. augmentation, masking)



## Language-Supervision:

- E.g. CLIP, SigLIP, MetaCLIP
- Learning from language captions that describe the image

### (1) Contrastive pre-training



# Current State of Visual Representation Learning

## Self-Supervision:

- E.g. MoCo, MAE, DINO
- Learning from images directly (e.g. augmentation, masking)
- Training on ImageNet-like data (1M to >100M scale)

## Language-Supervision:

- E.g. CLIP, SigLIP, MetaCLIP
- Learning from language captions that describe the image
- Training on image-text pairs from the Internet (400M to 100B scale)

# Current State of Visual Representation Learning

## Self-Supervision:

- E.g. MoCo, MAE, DINO
- Learning from images directly (e.g. augmentation, masking)
- Training on ImageNet-like data (1M to >100M scale)
- Good at classification, segmentation, depth estimation, etc

## Language-Supervision:

- E.g. CLIP, SigLIP, MetaCLIP
- Learning from language captions that describe the image
- Training on image-text pairs from the Internet (400M to 100B scale)
- Good at classification, and widely used as backbone for **multimodal** models

# The Success of CLIP as an Encoder in Multimodal Models

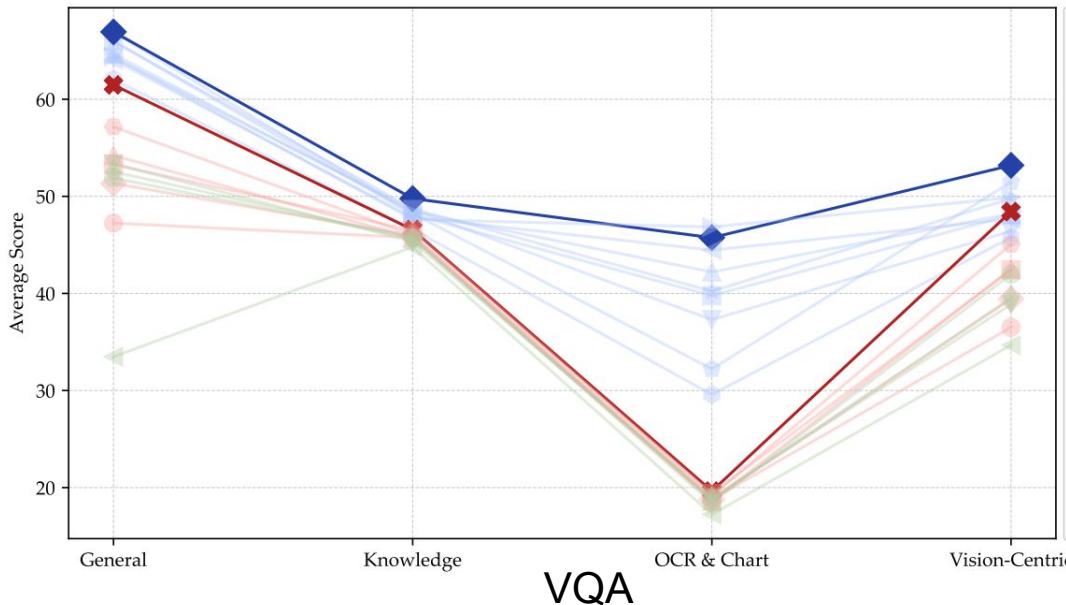
- CLIP has become the dominant visual representation learning method in multimodal models.

# The Success of CLIP as an Encoder in Multimodal Models

- CLIP has become the dominant visual representation learning method in multimodal models.
  - VLM: LLaVA, Cambrian, PaliGemma, SEED-VL ...
  - VLA: Pi, Otter, ...
  - ...

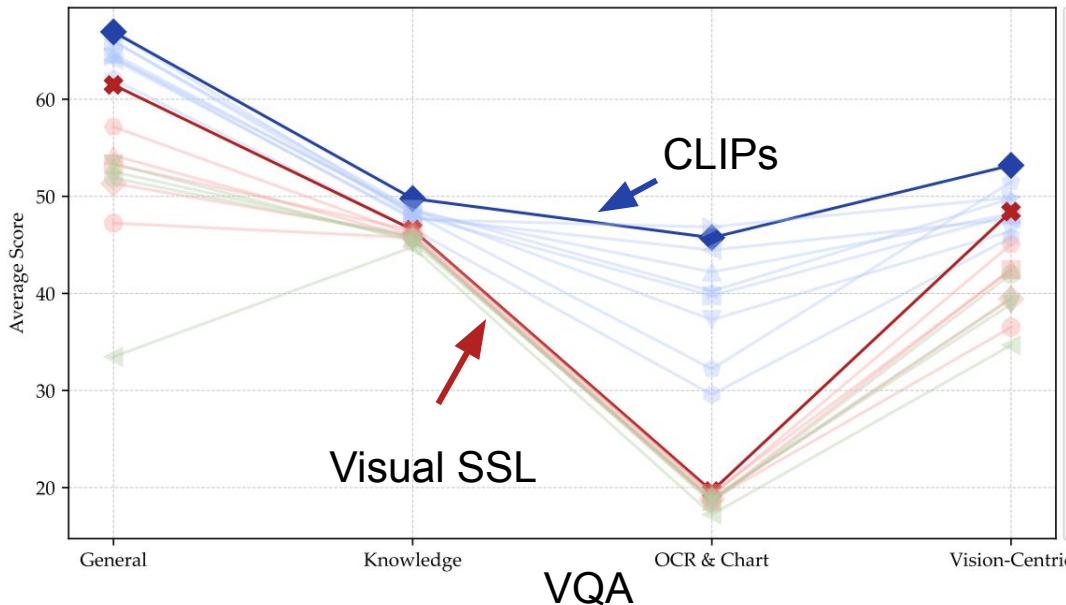
# The Success of CLIP as an Encoder in Multimodal Models

- CLIP has become the dominant visual representation learning method in multimodal models.



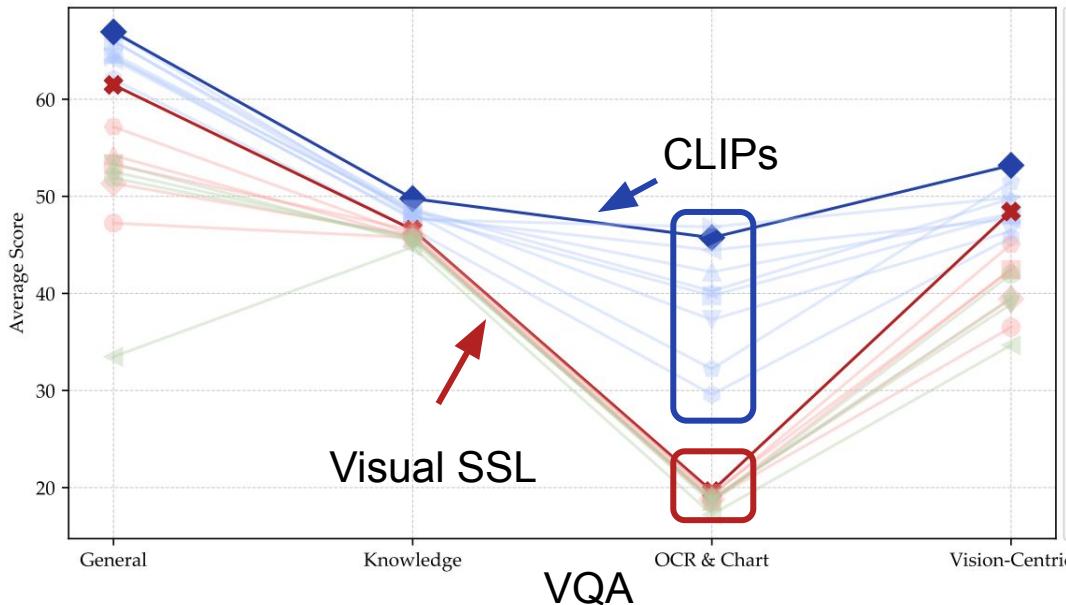
# The Success of CLIP as an Encoder in Multimodal Models

- CLIP has become the dominant visual representation learning method in multimodal models.



# The Success of CLIP as an Encoder in Multimodal Models

- CLIP has become the dominant visual representation learning method in multimodal models.



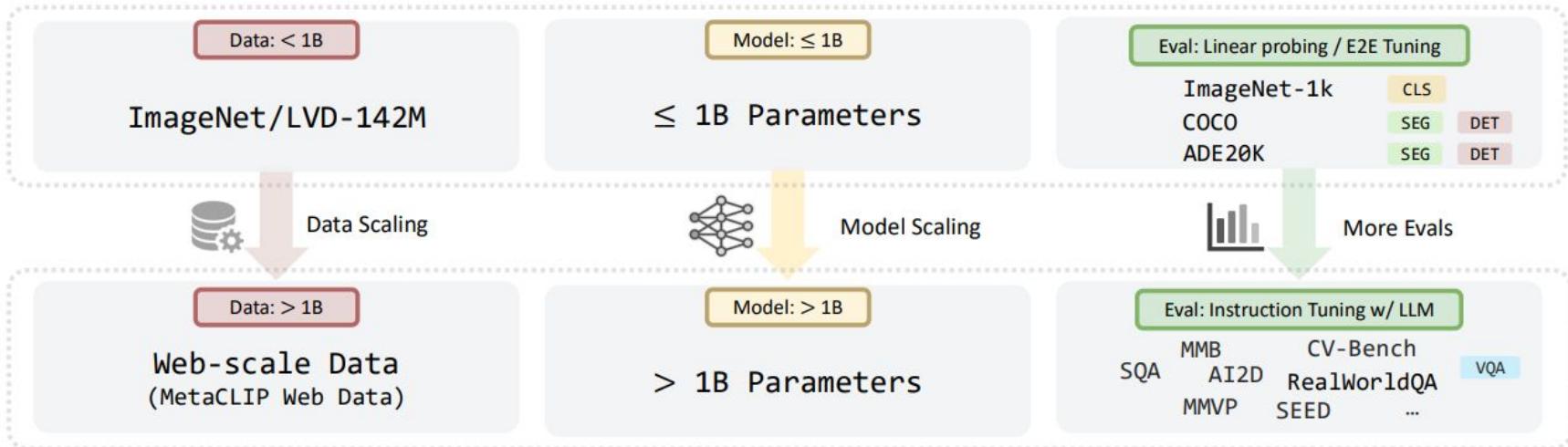
# The Success of CLIP as an Encoder in Multimodal Models

- CLIP has become the dominant visual representation learning method in multimodal models.
- Is CLIP better because of **language supervision** or **data distribution**?

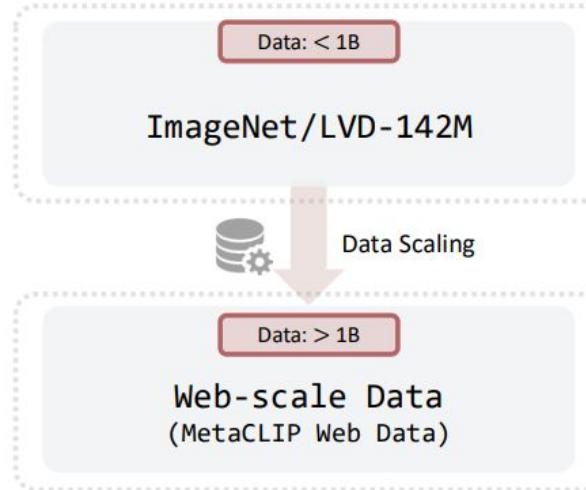
# The Success of CLIP as an Encoder in Multimodal Models

- CLIP has become the dominant visual representation learning method in multimodal models.
- Is CLIP better because of **language supervision** or **data distribution**?
- To really understand this, we need controlled comparisons on the data.

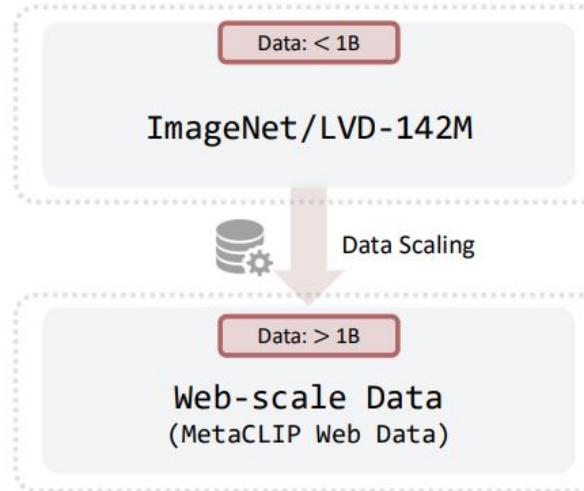
# WebSSL: Towards Modernizing Visual SSL



# WebSSL: Towards Modernizing Visual SSL



# WebSSL: Towards Modernizing Visual SSL



## ImageNet / LVD-142M<sup>1</sup>:

**Million scale** ImageNet  
or  
ImageNet-like distribution  
of mostly natural images

## Web-Scale Images:

**Billion scale** diverse  
“random” images from the  
Internet

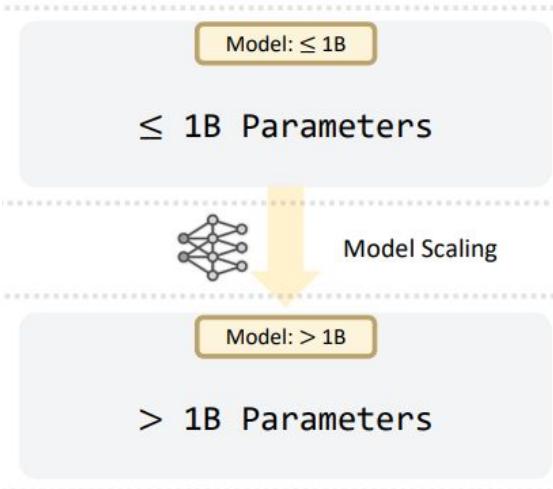
E.g. MetaCLIP<sup>2</sup> (“MC-2B”)

*We only use the images for  
SSL*

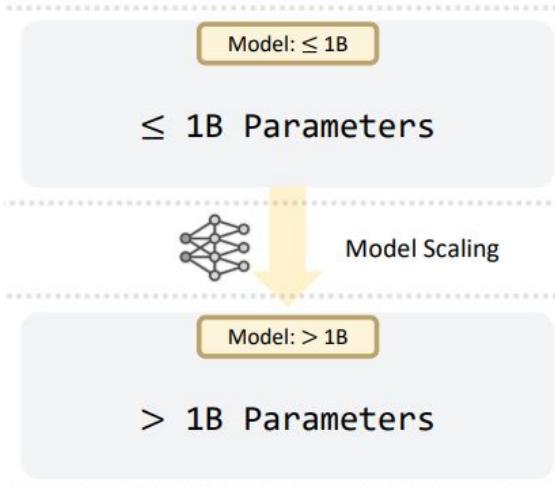
<sup>1</sup> Oquab, M., et al. (2023). DINOv2: Learning Robust Visual Features without Supervision

<sup>2</sup> Xu, H., et al. (2023). Demystifying CLIP Data.

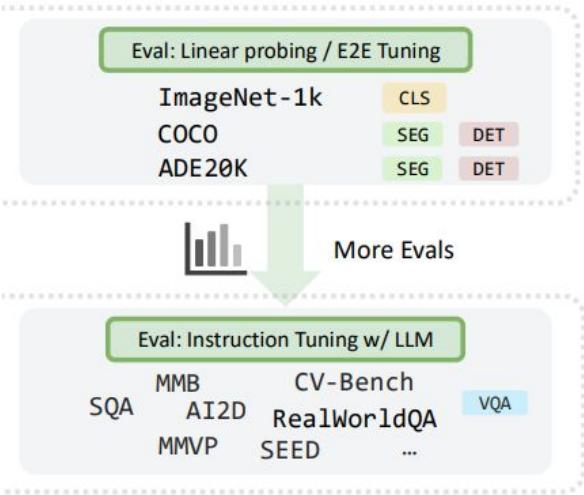
# WebSSL: Towards Modernizing Visual SSL



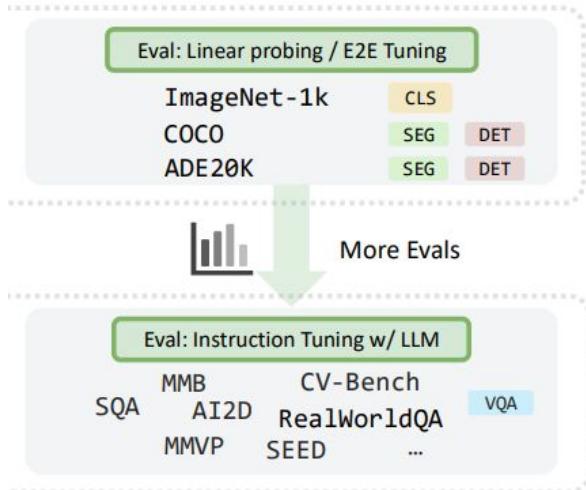
# WebSSL: Towards Modernizing Visual SSL



# WebSSL: Towards Modernizing Visual SSL



# WebSSL: Towards Modernizing Visual SSL



## Classic Vision Eval:

Classification,  
segmentation, depth  
estimation, etc.



Elephant

## VQA as a Vision Eval:

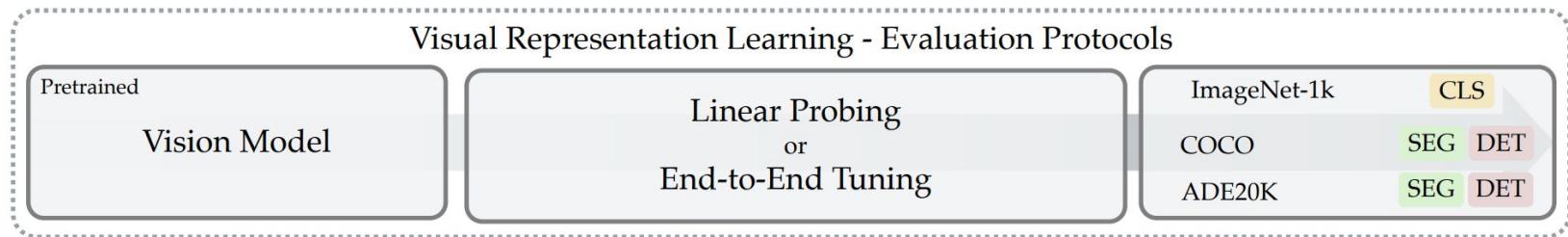


Assesses wider range of  
capabilities and more  
diverse questions

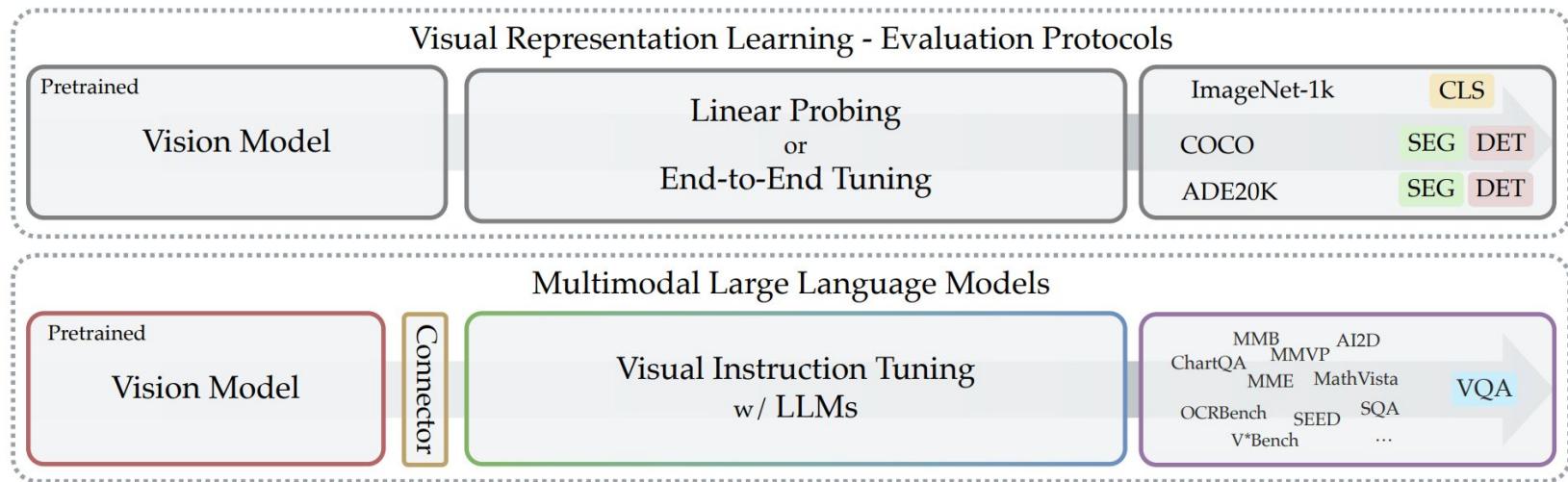


How many cars  
are in the image?

# Evaluation Setup



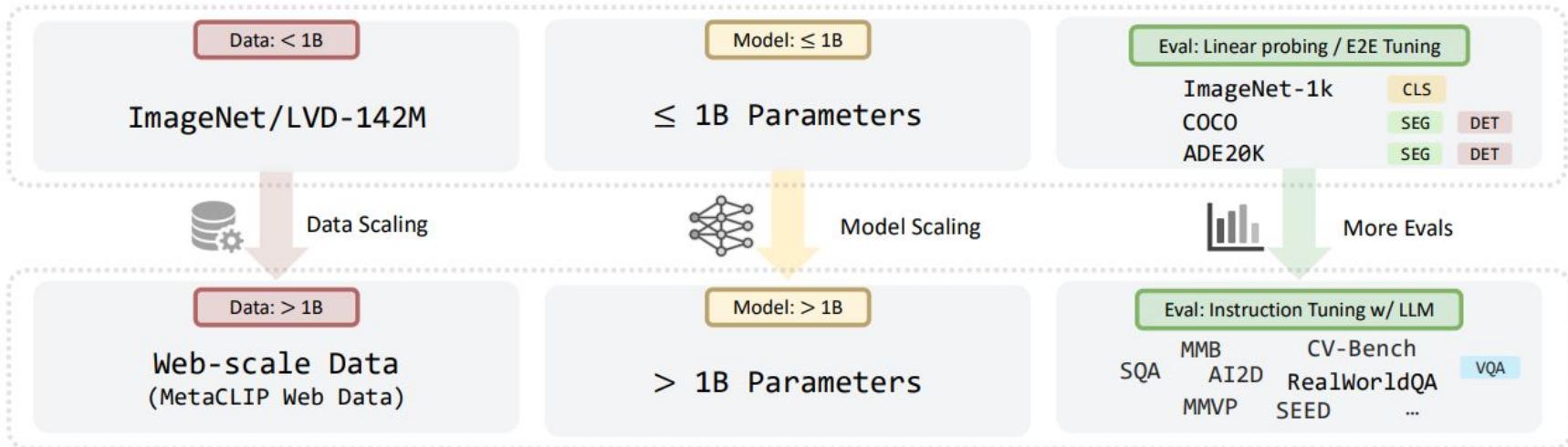
# Evaluation Setup



We use Cambrian with a *frozen* vision encoder (but finetuned adapter + LLM) to evaluate on VQA tasks: **General, Knowledge, OCR&Chart, Vision-Centric**

*“Is language supervision or the data more important?”*

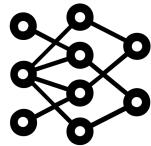
*“Is language supervision or the data more important?”*



**Let's train WebSSL and find out via controlled experiments!**

# WebSSL

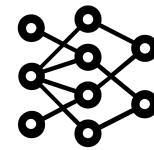
1. Scaling up model



2. Scaling up data



# WebSSL: Scaling Up Model

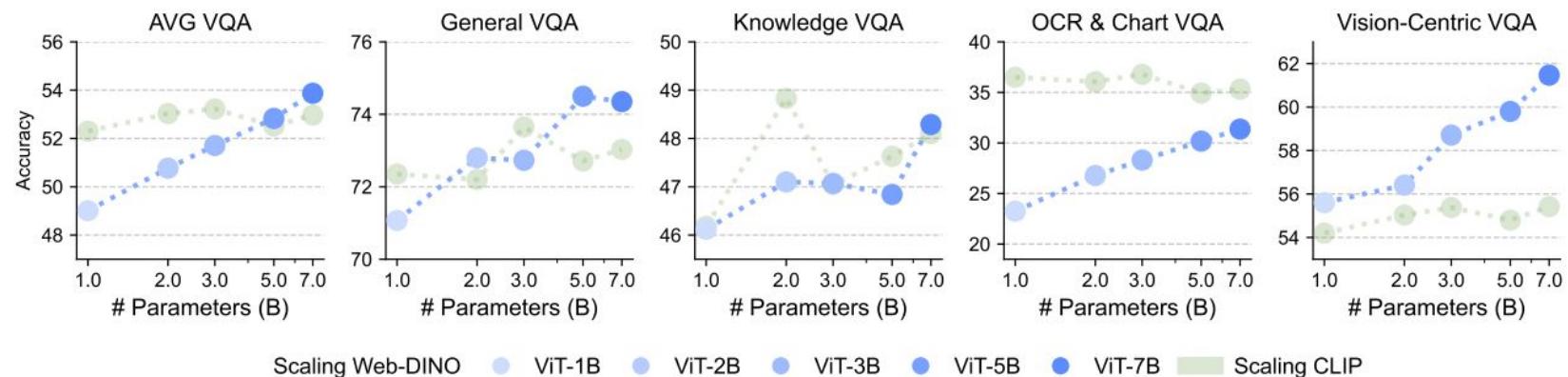


# WebSSL: Scaling Up Model

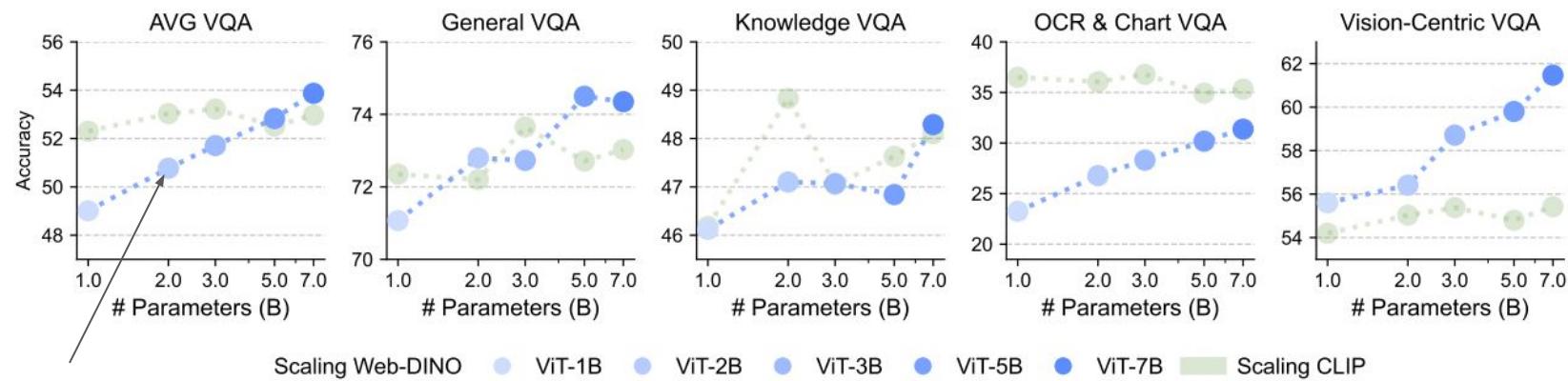
- **Data:** MC-2B, 2 billion samples seen
- **Model:** ViT-1B, ViT-2B, ViT-3B, ViT-5B, ViT-7B
- **Method:** DINOv2 (SSL) vs. CLIP (Language-Supervised)
- **Eval:** Use VQA as evaluation and break down benchmarks into:

| General    | Knowledge | OCR & Chart | Vision-Centric |
|------------|-----------|-------------|----------------|
| MMBench-En | AI2D      | ChartQA     | CV-Bench 2D    |
| MME        | MathVista | DocVQA      | CV-Bench 3D    |
| GQA        | MMMU      | OCRBench    | MMVP           |
| SEED       | ScienceQA | TextVQA     | RealWorldQA    |

# WebSSL: Scaling Up Model



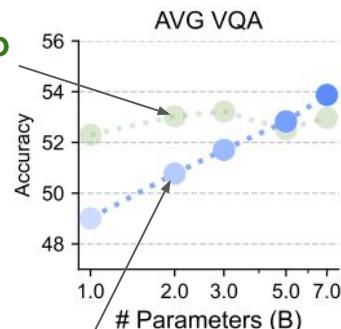
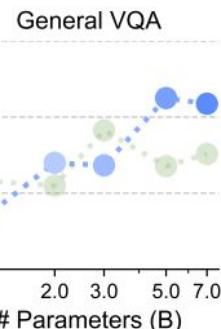
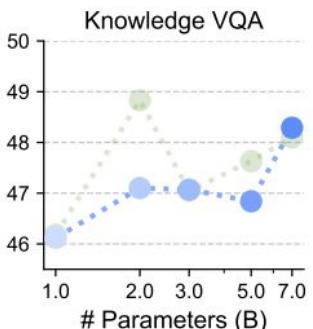
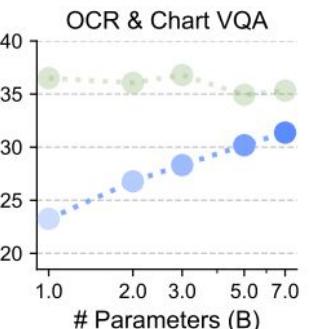
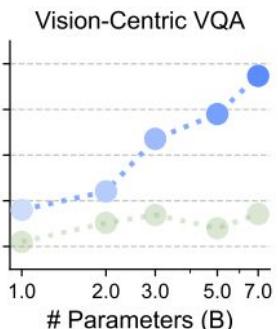
# WebSSL: Scaling Up Model



DINO

# WebSSL: Scaling Up Model

CLIP



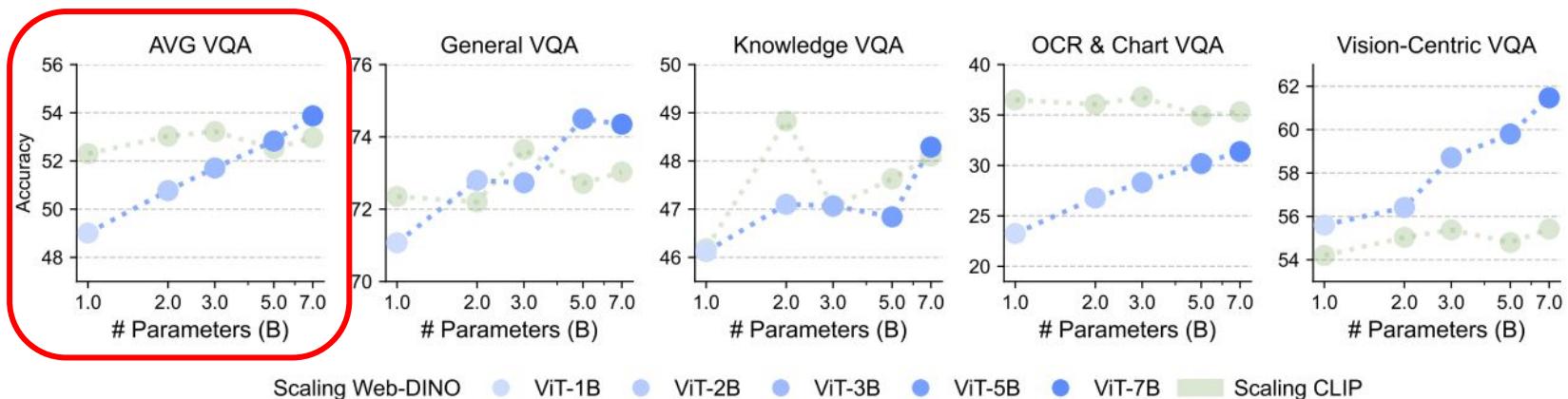
Scaling Web-DINO

ViT-1B    ViT-2B    ViT-3B    ViT-5B    ViT-7B    Scaling CLIP

DINO

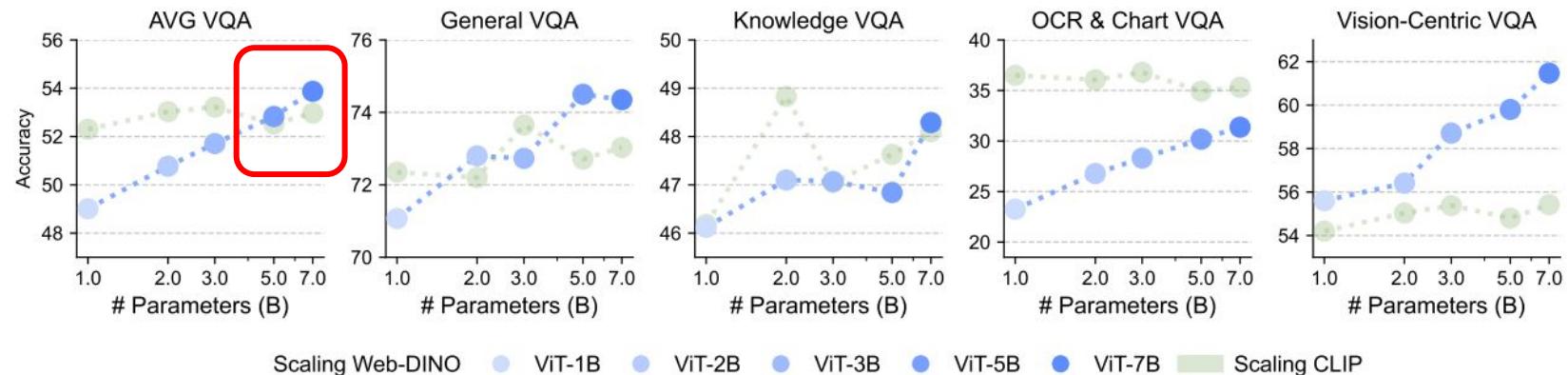
# WebSSL: Scaling Up Model

## 1. Web-DINO scales log-linearly *w.r.t* to model sizes



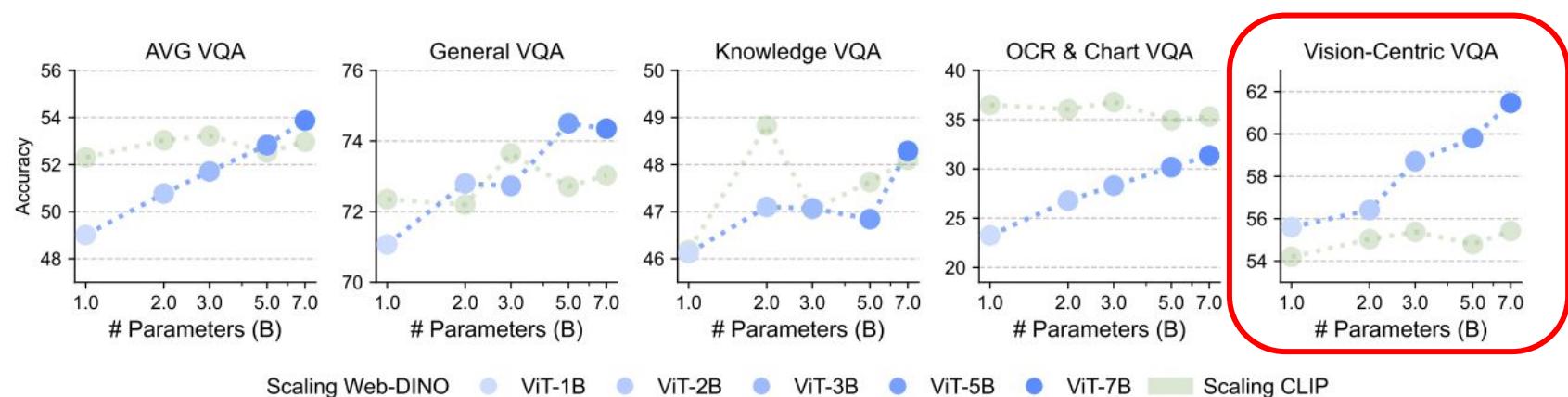
# WebSSL: Scaling Up Model

1. Web-DINO scales log-linearly *w.r.t* to model sizes
2. Under same conditions, Web-DINO scales better than CLIP



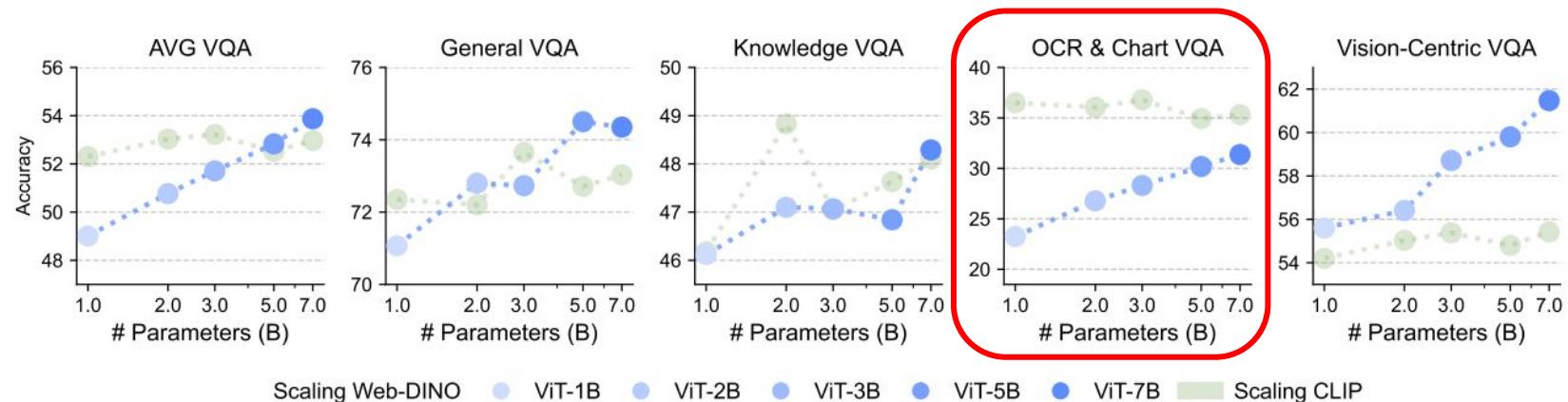
# WebSSL: Scaling Up Model

1. Web-DINO scales log-linearly *w.r.t* to model sizes
2. Under same conditions, Web-DINO scales better than CLIP
3. Web-DINO continues to excel on Vision-Centric VQA



# WebSSL: Scaling Up Model

1. Web-DINO scales log-linearly *w.r.t* to model sizes
2. Under same conditions, Web-DINO scales better than CLIP
3. Web-DINO continues to excel on Vision-Centric VQA
4. The gap on OCR & Chart is closing!



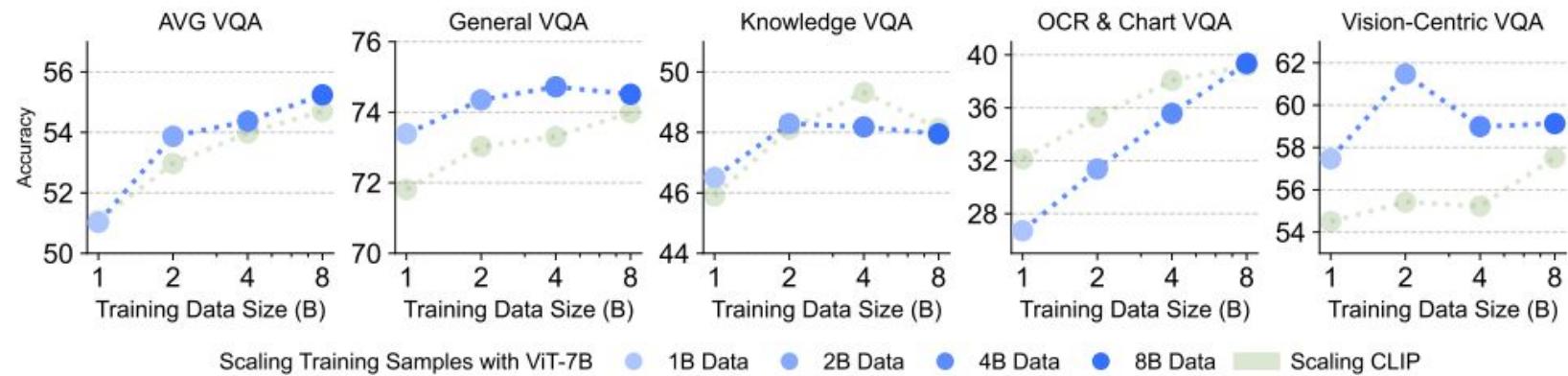
# WebSSL: Scaling Up Data



# WebSSL: Scaling Up Data

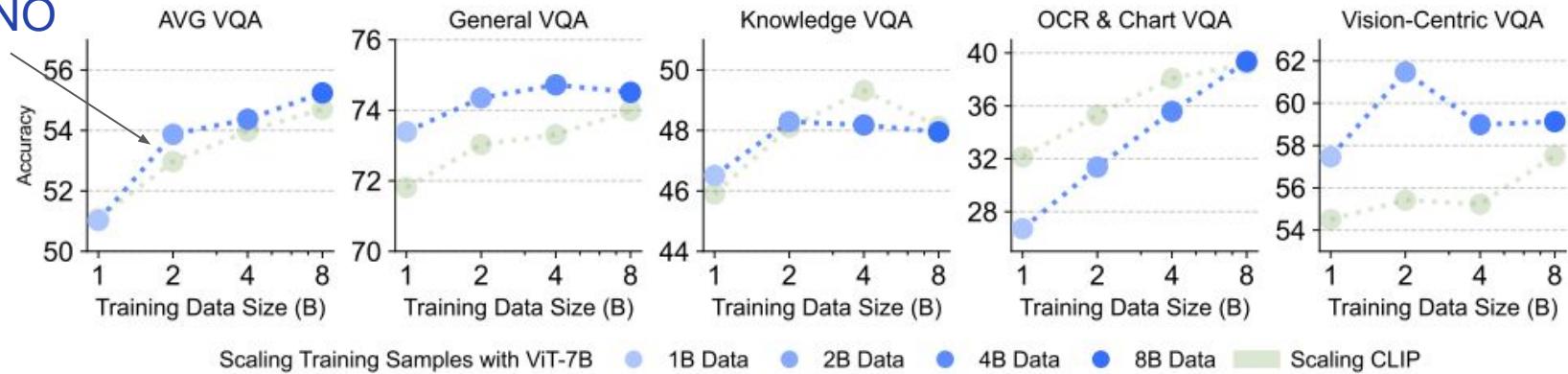
- **Data:** MC-2B:
  - 1 billion samples seen
  - 2 billion samples seen
  - 4 billion samples seen
  - 8 billion samples seen
- **Model:** ViT-7B
- **Method:** DINOv2 (SSL) vs. CLIP (Language-Supervised)
- **Eval:** Use VQA as evaluation.

# WebSSL: Scaling Up Data

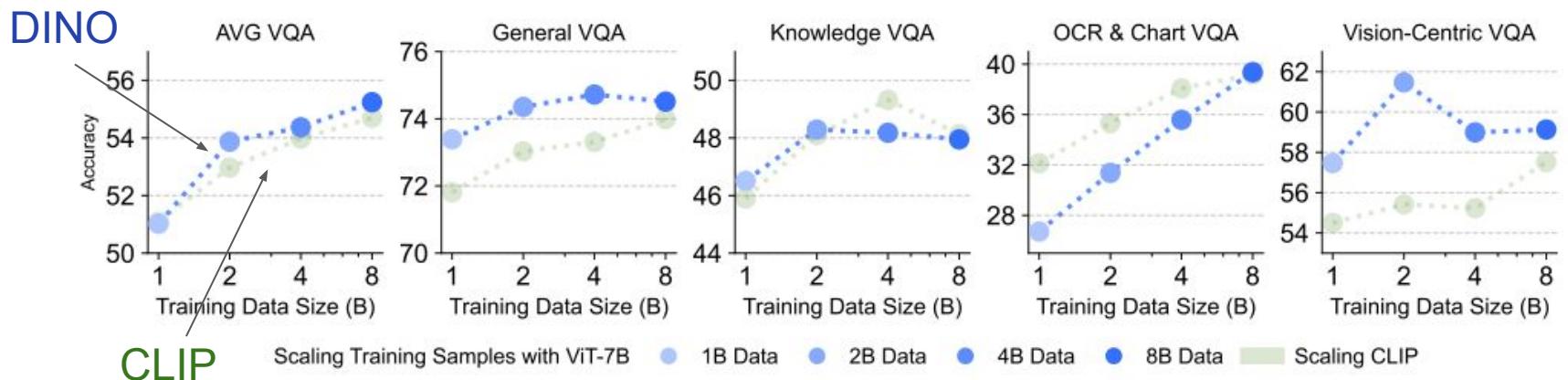


# WebSSL: Scaling Up Data

DINO

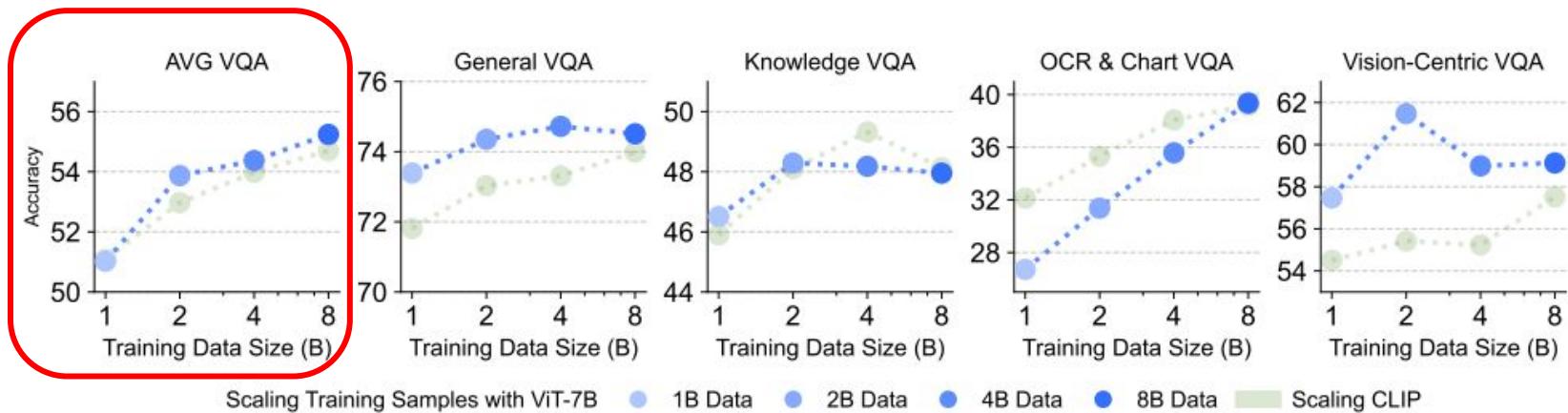


# WebSSL: Scaling Up Data



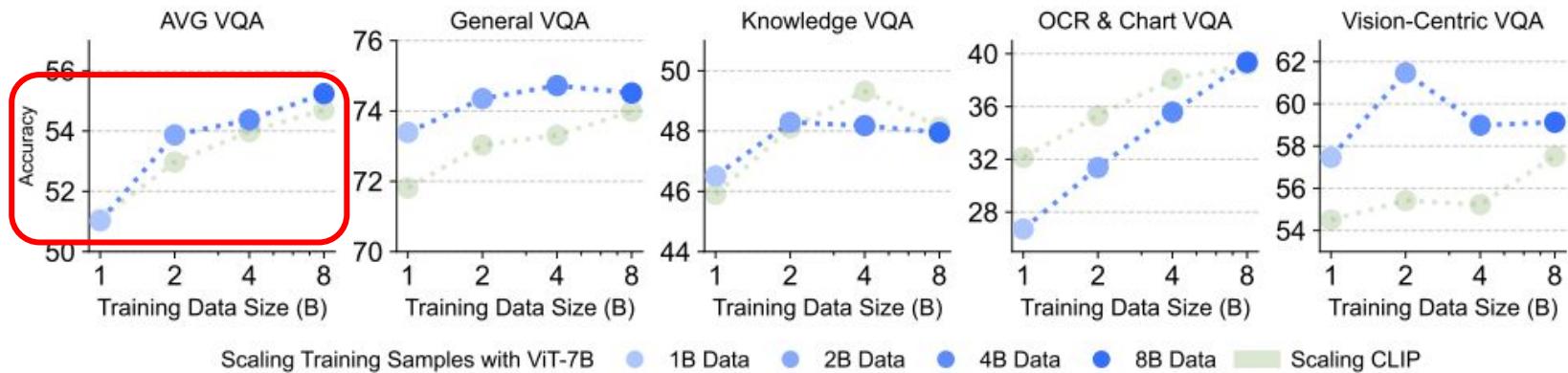
# WebSSL: Scaling Up Data

1. Model improves *w.r.t* to more data seen



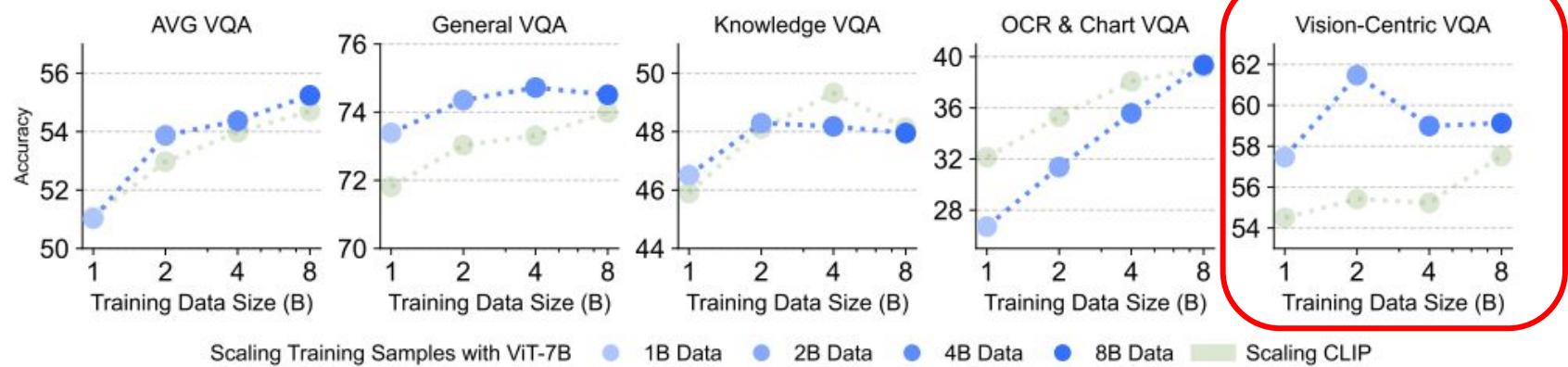
# WebSSL: Scaling Up Data

1. Model improves *w.r.t* to more data seen
2. SSL models consistently outperform CLIP models at all data sizes



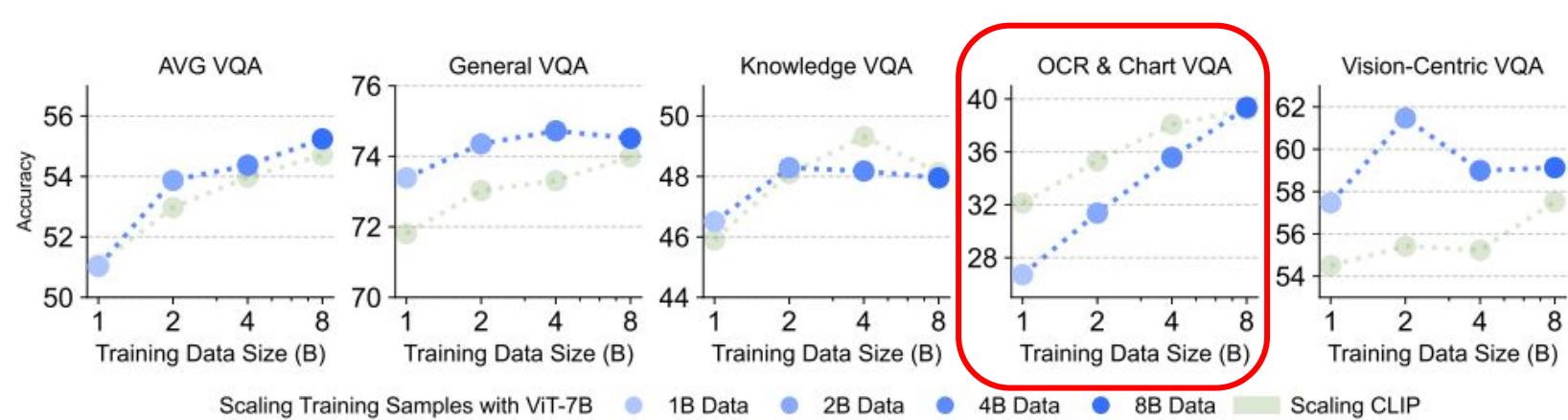
# WebSSL: Scaling Up Data

1. Model improves *w.r.t* to more data seen
2. SSL models consistently outperform CLIP models at all data sizes
3. SSL models are better “visual” models



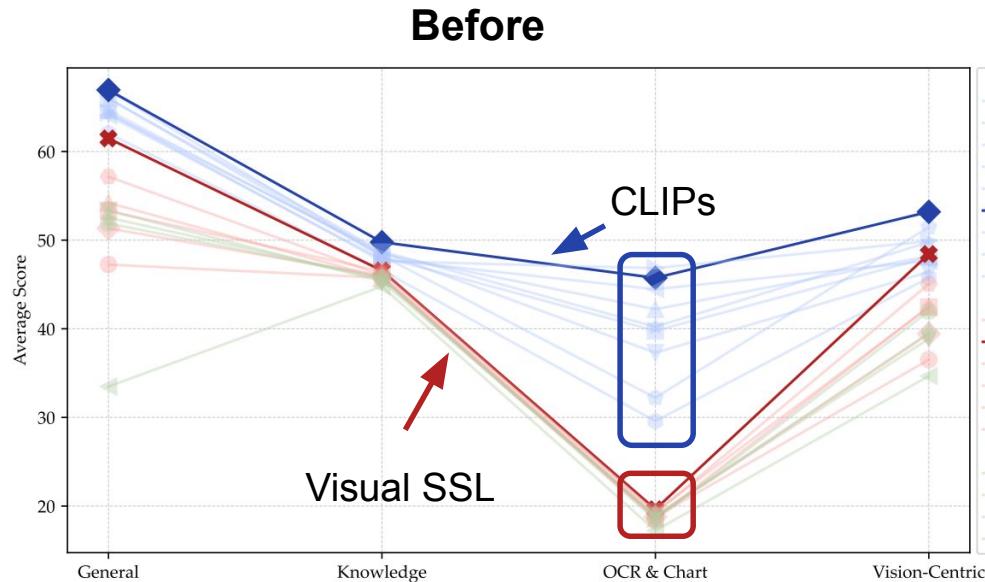
# WebSSL: Scaling Up Data

1. Model improves *w.r.t* to more data seen
2. SSL models consistently outperform CLIP models at all data sizes
3. SSL models are better “visual” models
4. Gap closes on OCR & Chart!



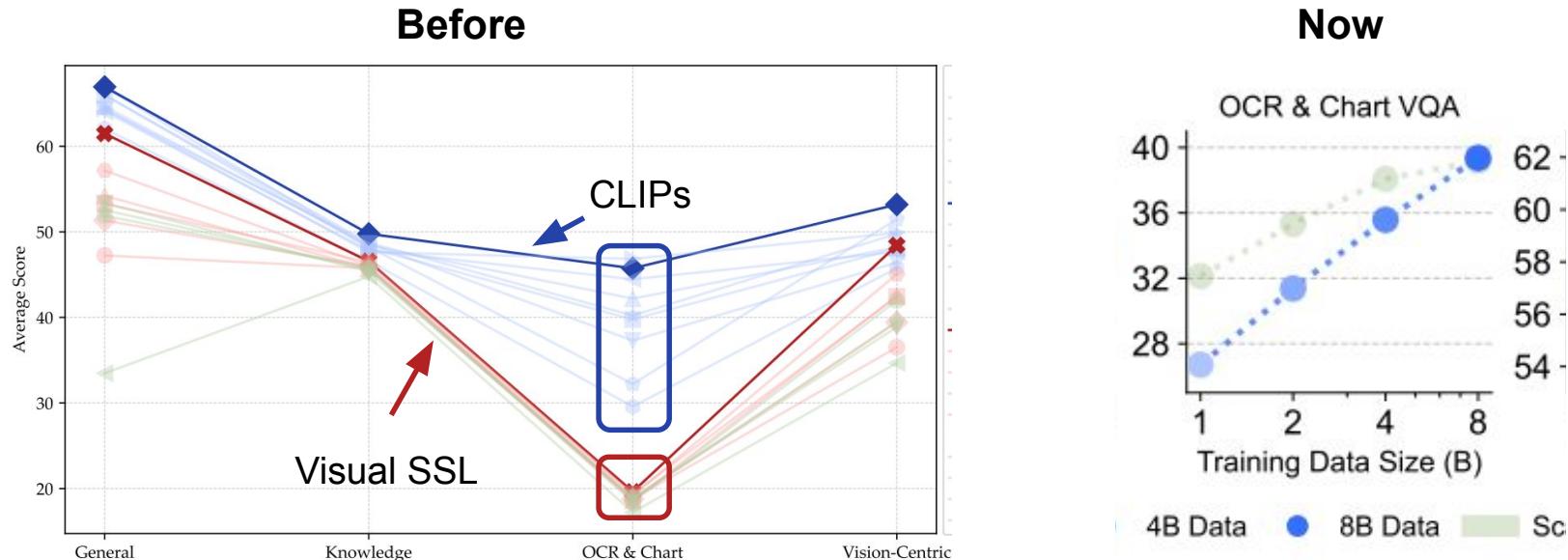
# WebSSL: Scaling Up Data

1. Model improves *w.r.t* to more data seen
2. SSL models consistently outperform CLIP models at all data sizes
3. SSL models are better “visual” models
4. Gap closes on OCR & Chart!



# WebSSL: Scaling Up Data

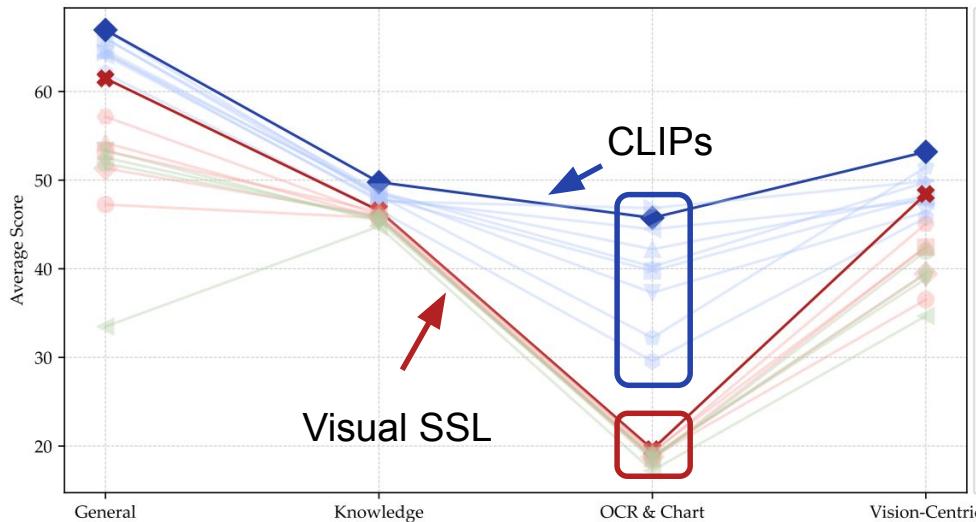
1. Model improves *w.r.t* to more data seen
2. SSL models consistently outperform CLIP models at all data sizes
3. SSL models are better “visual” models
4. Gap closes on OCR & Chart!



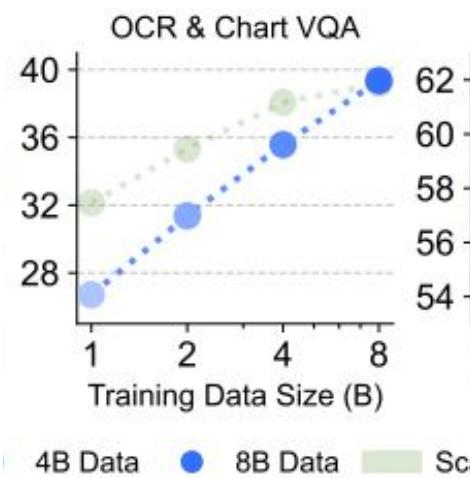
# WebSSL: Scaling Up Data

VQA capability is **not unique** to language-supervised vision encoders!  
SSL can do just as well at scale :)

**Before**



**Now**



# Takeaways from Scaling Up WebSSL

SSL performance improves with ...

1. Larger model size
2. More data seen

SSL scales better than CLIP and is competitive with CLIP when controlling for the data.

# Takeaways from Scaling Up WebSSL

SSL performance improves with ...

1. Larger model size
2. More data seen

SSL scales better than CLIP and is competitive with CLIP when controlling for the data.

So it's more about the data, not language supervision!

# Deep Dive and Analysis

# Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

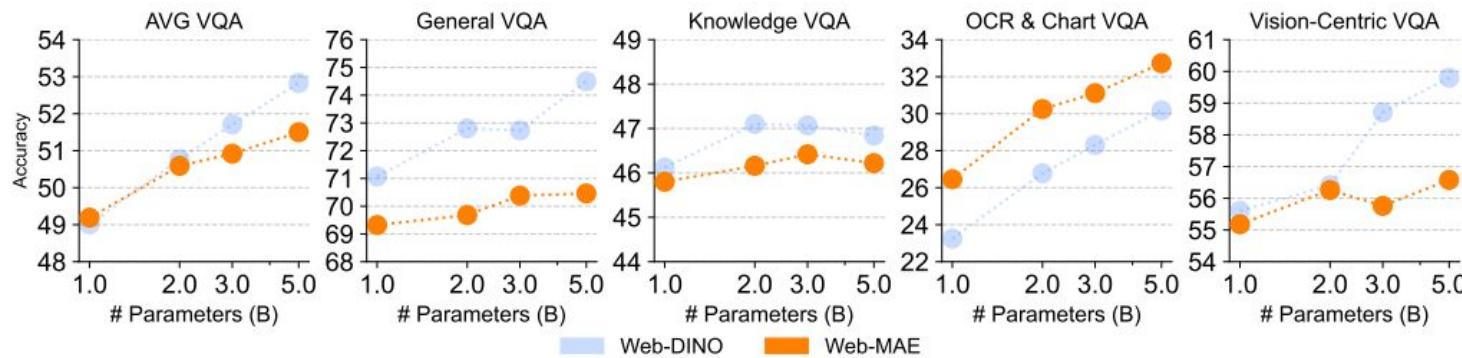
Q1. Does the observed scaling behavior generalize to other visual SSL methods?

Q1. Does the observed scaling behavior generalize to other visual SSL methods?

Answer: we conduct similar experiments on MAE (another SSL method)

Q1. Does the observed scaling behavior generalize to other visual SSL methods?

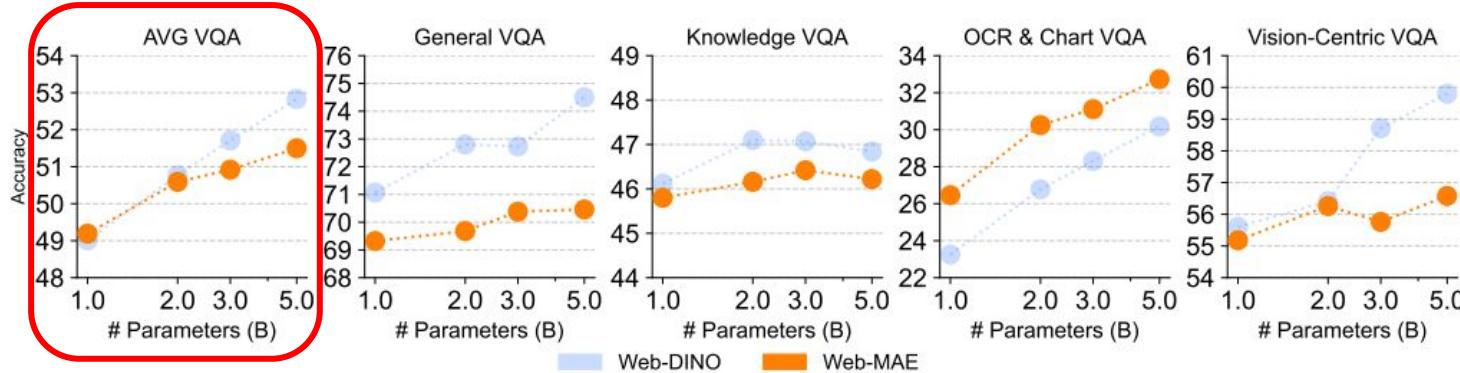
Answer: we conduct similar experiments on MAE (another SSL method)



Q1. Does the observed scaling behavior generalize to other visual SSL methods?

Answer: we conduct similar experiments on MAE (another SSL method)

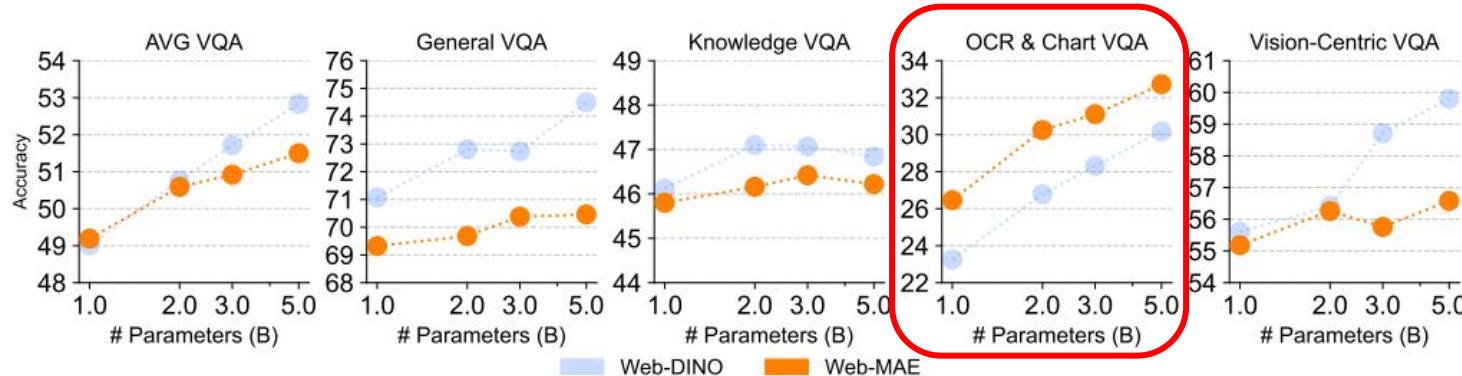
1. MAE improves as well when trained on web-scale images!



## Q1. Does the observed scaling behavior generalize to other visual SSL methods?

Answer: we conduct similar experiments on MAE (another SSL method)

1. MAE improves as well when trained on web-scale images!
2. Yet different SSL methods still learn different features
  - a. MAE is consistently better than DINO at OCR & Chart

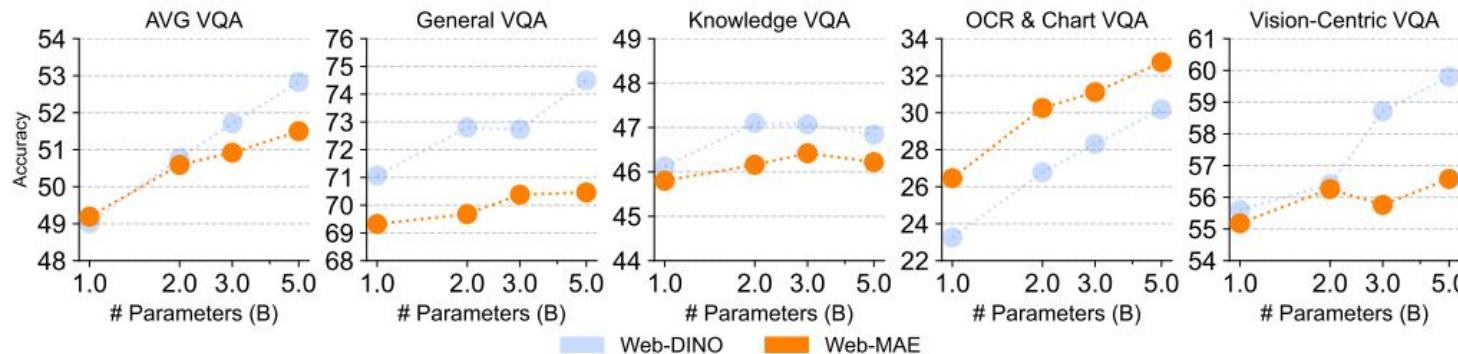


## Q1. Does the observed scaling behavior generalize to other visual SSL methods?

Answer: we conduct similar experiments on MAE (another SSL method)

1. MAE improves as well when trained on web-scale images!
2. Yet different SSL methods still learn different features
  - a. MAE is consistently better than DINO at OCR & Chart

**Yes, the observed behavior generalize to other SSL methods!**



# Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?  
A: Yes, it does!

# Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A:Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

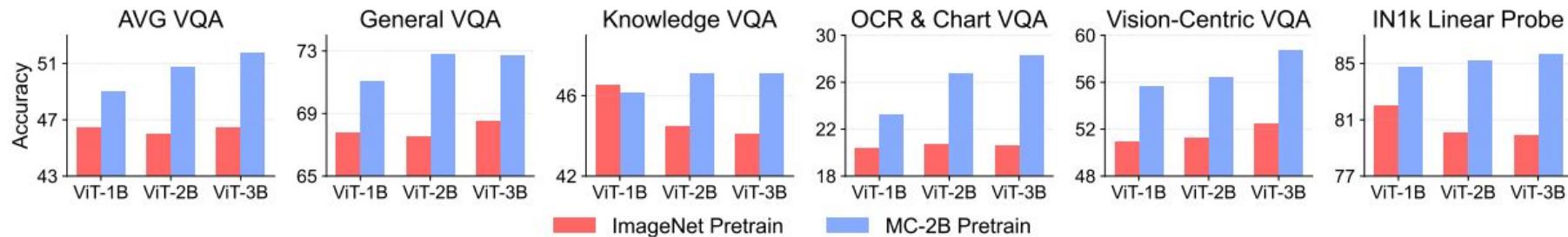
Q2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

Q2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

Answer: we conduct similar experiments training on ImageNet-1k

Q2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

Answer: we conduct similar experiments training on ImageNet-1k

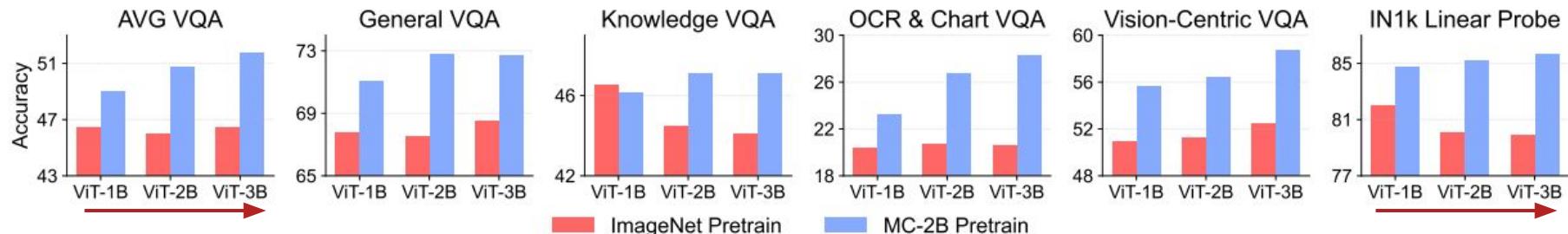


Q2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

Answer: we conduct similar experiments training on ImageNet-1k

**No obvious scaling on both VQA and ImageNet-1k evaluation.**

**We need large and diverse data in order to scale SSL.**



# Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large and diverse data.

# Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data.

**3. How do WebSSL models perform on classic vision tasks?**

Q3. How do WebSSL models perform on classic vision tasks?

Q3. How do WebSSL models perform on classic vision tasks?

Answer: Evaluate our trained Web-DINO on classic vision benchmarks with linear probes.

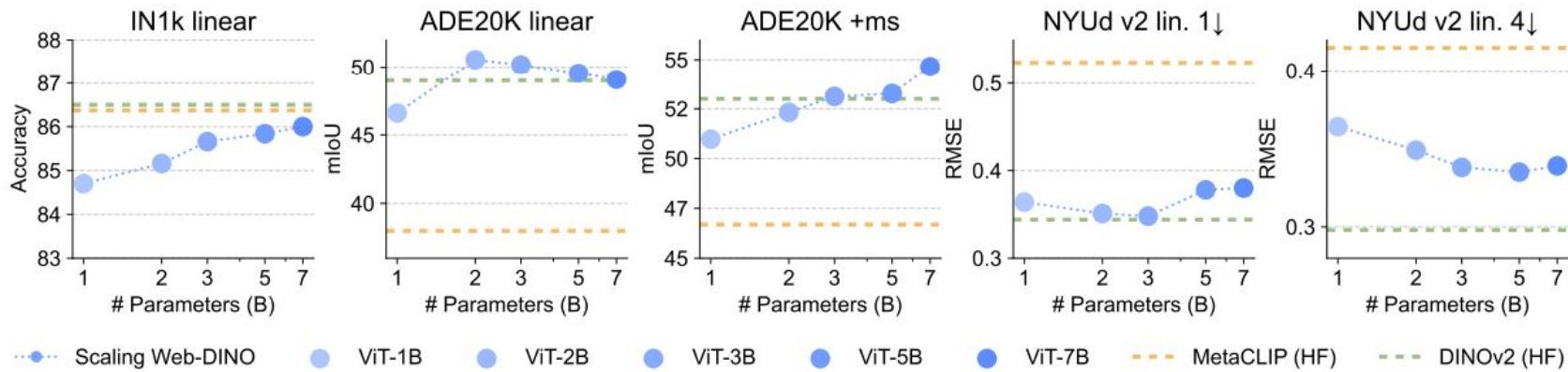
### Q3. How do WebSSL models perform on classic vision tasks?

Answer: Evaluate our trained Web-DINO on classic vision benchmarks with linear probes.

- Classification:
  - ImageNet-1k
- Segmentation:
  - ADE20k (last layer)
  - ADE20k (multi-scale)
- Depth Estimation:
  - NYUd v2 (last layer)
  - NYUd v2 (four layers)

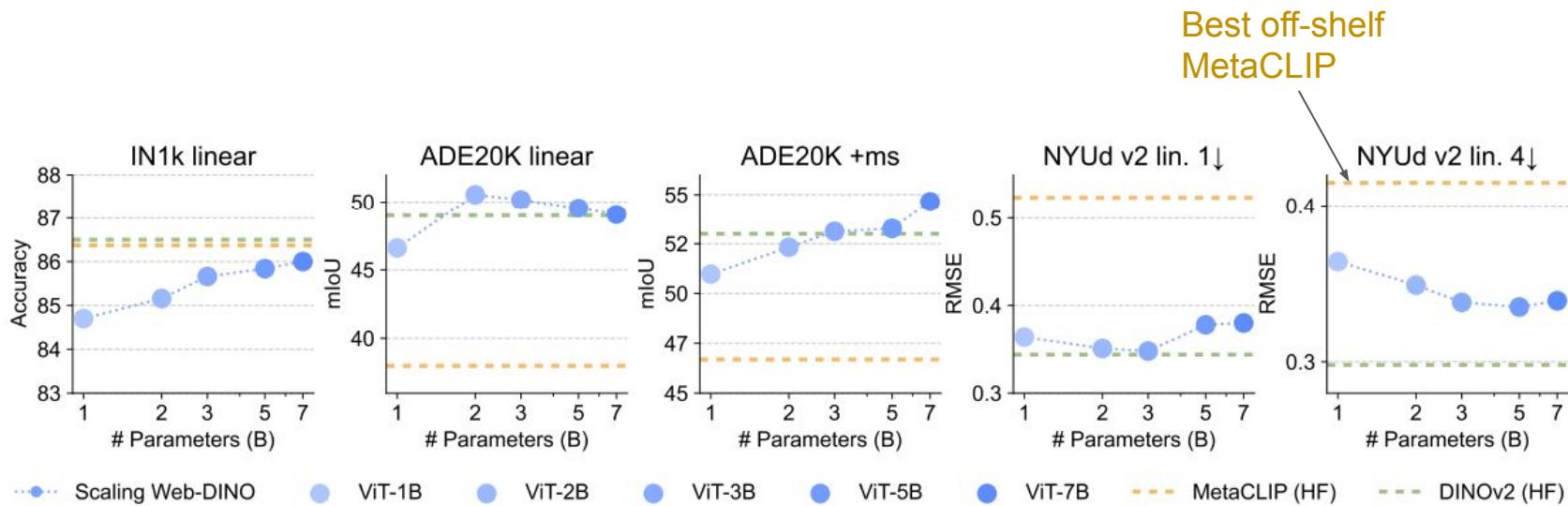
### Q3. How do WebSSL models perform on classic vision tasks?

Answer: Evaluate our trained Web-DINO on classic vision benchmarks with linear probes.



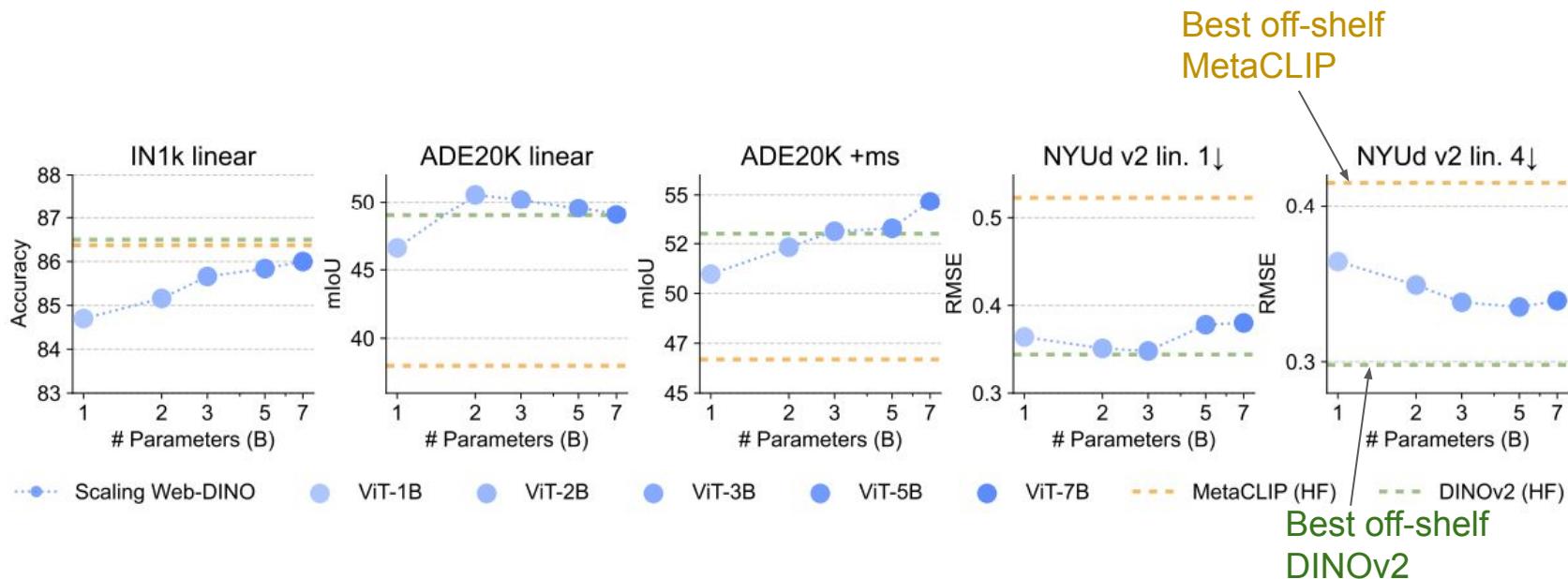
### Q3. How do WebSSL models perform on classic vision tasks?

Answer: Evaluate our trained Web-DINO on classic vision benchmarks



### Q3. How do WebSSL models perform on classic vision tasks?

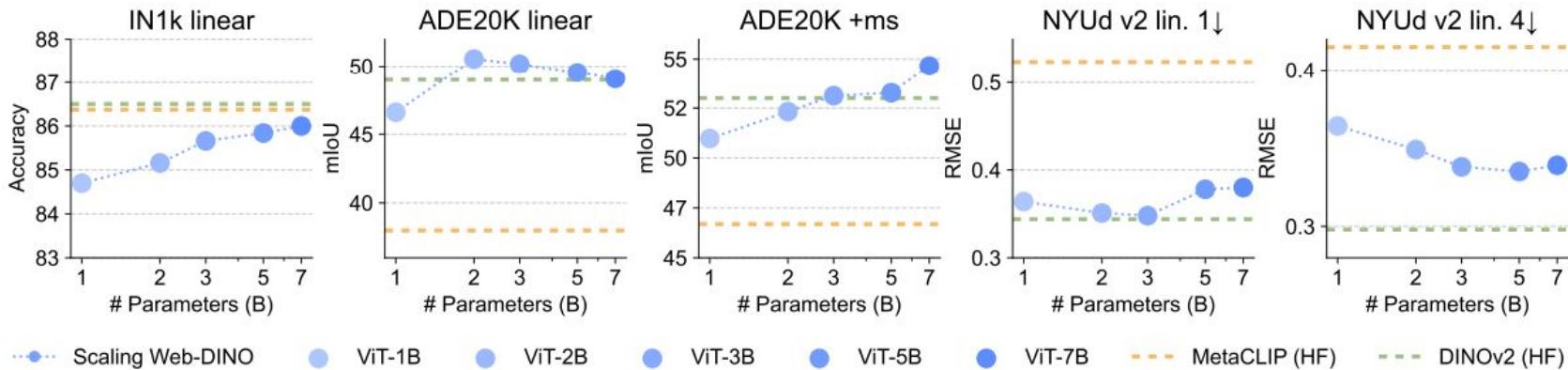
Answer: Evaluate our trained Web-DINO on classic vision benchmarks



### Q3. How do WebSSL models perform on classic vision tasks?

Answer: Evaluate our trained Web-DINO on classic vision benchmarks

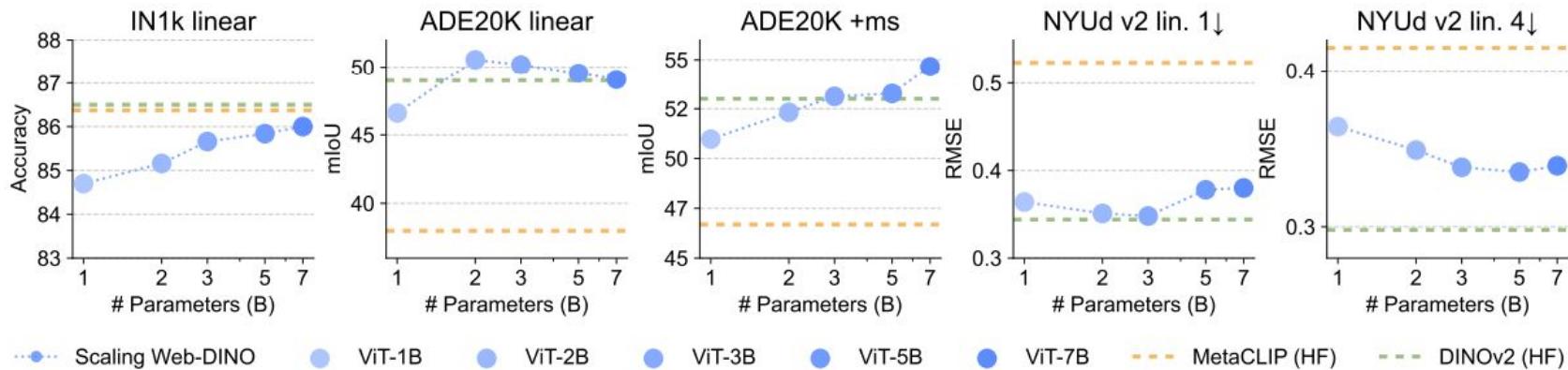
#### 1. Web-DINO is mostly better than MetaCLIP



### Q3. How do WebSSL models perform on classic vision tasks?

Answer: Evaluate our trained Web-DINO on classic vision benchmarks

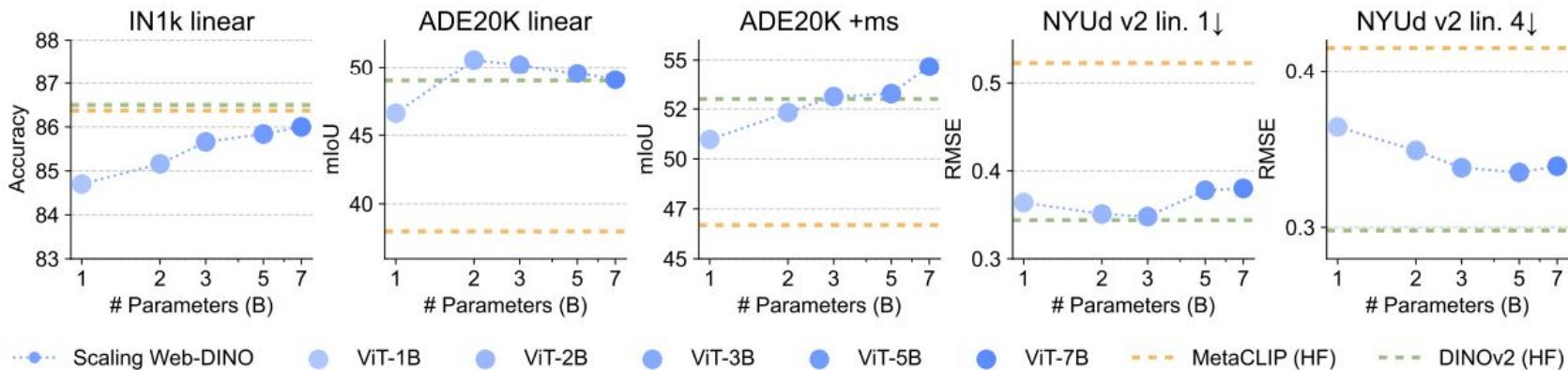
1. Web-DINO is mostly better than MetaCLIP
2. Web-DINO remains competitive with DINoV2



### Q3. How do WebSSL models perform on classic vision tasks?

Answer: Evaluate our trained Web-DINO on classic vision benchmarks

1. Web-DINO is mostly better than MetaCLIP
2. Web-DINO remains competitive with DINOv2
  - a. Challenging! Since LVD142M (DINOv2 train data) is retrieved from classic vision tasks.



# Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data.

3. How do WebSSL models perform on classic vision tasks?

A: Better than CLIP models and competitive with DINOv2.

# Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data.

3. How do WebSSL models perform on classic vision tasks?

A: Better than CLIP models and competitive with DINOv2.

**4. Why does web-scale data improve OCR & Chart performance?**

Q4. Why does web-scale data improve OCR & Chart performance?

#### Q4. Why does web-scale data improve OCR & Chart performance?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

#### Q4. Why does web-scale data improve OCR & Chart performance?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

Filter images that contain text/chart/documents...

## Q4. Why does web-scale data improve OCR & Chart performance?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

Filter images that contain text/chart/documents...

Raw Data



Light Filter (50.3%)



Heavy Filter (1.3%)



*“Does this image contain any readable text?”*

*“Does this image contain charts, tables, or documents with readable text?”*

## Q4. Why does web-scale data improve OCR & Chart performance?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

| Method      | % of MC-2B | VQA Evaluator                                                     |                                                                   |                                                                   |                                                                 |                                                                    | Breakdown of OCR & Chart Tasks                                     |                                                                    |                                                                   |                                                                    |
|-------------|------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|
|             |            | AVG                                                               | General                                                           | Knowledge                                                         | Vision Centric                                                  | OCR Chart                                                          | ChartQA                                                            | OCR Bench                                                          | TextVQA                                                           | DocVQA                                                             |
| CLIP 2B     | 100%       | 53.0                                                              | 72.2                                                              | 48.8                                                              | 55.0                                                            | 36.1                                                               | 32.8                                                               | 32.9                                                               | 52.6                                                              | 26.0                                                               |
| Web-DINO 2B | 100%       | 50.8                                                              | 72.8                                                              | 47.1                                                              | 56.4                                                            | 26.8                                                               | 23.3                                                               | 15.6                                                               | 49.2                                                              | 19.0                                                               |
| Web-DINO 2B | 50.3%      | 53.4 <span style="color: green; font-weight: bold;">(+2.6)</span> | 73.0 <span style="color: green; font-weight: bold;">(+0.2)</span> | 51.7 <span style="color: green; font-weight: bold;">(+4.6)</span> | 55.6 <span style="color: red; font-weight: bold;">(-0.8)</span> | 33.2 <span style="color: green; font-weight: bold;">(+6.4)</span>  | 31.4 <span style="color: green; font-weight: bold;">(+8.1)</span>  | 27.3 <span style="color: green; font-weight: bold;">(+11.7)</span> | 51.3 <span style="color: green; font-weight: bold;">(+2.1)</span> | 23.0 <span style="color: green; font-weight: bold;">(+4.0)</span>  |
| Web-DINO 2B | 1.3%       | 53.7 <span style="color: green; font-weight: bold;">(+2.9)</span> | 70.7 <span style="color: red; font-weight: bold;">(-2.1)</span>   | 47.3 <span style="color: green; font-weight: bold;">(+0.2)</span> | 56.2 <span style="color: red; font-weight: bold;">(-0.2)</span> | 40.4 <span style="color: green; font-weight: bold;">(+13.6)</span> | 47.5 <span style="color: green; font-weight: bold;">(+24.2)</span> | 29.4 <span style="color: green; font-weight: bold;">(+13.8)</span> | 52.8 <span style="color: green; font-weight: bold;">(+3.6)</span> | 32.0 <span style="color: green; font-weight: bold;">(+13.0)</span> |

## Q4. Why does web-scale data improve OCR & Chart performance?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

| Method      | % of MC-2B | VQA Evaluator |             |             |                |              | Breakdown of OCR & Chart Tasks |              |             |              |
|-------------|------------|---------------|-------------|-------------|----------------|--------------|--------------------------------|--------------|-------------|--------------|
|             |            | AVG           | General     | Knowledge   | Vision Centric | OCR Chart    | ChartQA                        | OCR Bench    | TextVQA     | DocVQA       |
| CLIP 2B     | 100%       | 53.0          | 72.2        | 48.8        | 55.0           | 36.1         | 32.8                           | 32.9         | 52.6        | 26.0         |
| Web-DINO 2B | 100%       | 50.8          | 72.8        | 47.1        | 56.4           | 26.8         | 23.3                           | 15.6         | 49.2        | 19.0         |
| Web-DINO 2B | 50.3%      | 53.4 (+2.6)   | 73.0 (+0.2) | 51.7 (+4.6) | 55.6 (-0.8)    | 33.2 (+6.4)  | 31.4 (+8.1)                    | 27.3 (+11.7) | 51.3 (+2.1) | 23.0 (+4.0)  |
| Web-DINO 2B | 1.3%       | 53.7 (+2.9)   | 70.7 (-2.1) | 47.3 (+0.2) | 56.2 (-0.2)    | 40.4 (+13.6) | 47.5 (+24.2)                   | 29.4 (+13.8) | 52.8 (+3.6) | 32.0 (+13.0) |

Trained on images containing **any** text

## Q4. Why does web-scale data improve OCR & Chart performance?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

| Method      | % of MC-2B | VQA Evaluator                                                     |                                                                   |                                                                   |                                                                 |                                                                    | Breakdown of OCR & Chart Tasks                                     |                                                                    |                                                                   |                                                                    |
|-------------|------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|
|             |            | AVG                                                               | General                                                           | Knowledge                                                         | Vision Centric                                                  | OCR Chart                                                          | ChartQA                                                            | OCR Bench                                                          | TextVQA                                                           | DocVQA                                                             |
| CLIP 2B     | 100%       | 53.0                                                              | 72.2                                                              | 48.8                                                              | 55.0                                                            | 36.1                                                               | 32.8                                                               | 32.9                                                               | 52.6                                                              | 26.0                                                               |
| Web-DINO 2B | 100%       | 50.8                                                              | 72.8                                                              | 47.1                                                              | 56.4                                                            | 26.8                                                               | 23.3                                                               | 15.6                                                               | 49.2                                                              | 19.0                                                               |
| Web-DINO 2B | 50.3%      | 53.4 <span style="color: green; font-weight: bold;">(+2.6)</span> | 73.0 <span style="color: green; font-weight: bold;">(+0.2)</span> | 51.7 <span style="color: green; font-weight: bold;">(+4.6)</span> | 55.6 <span style="color: red; font-weight: bold;">(-0.8)</span> | 33.2 <span style="color: green; font-weight: bold;">(+6.4)</span>  | 31.4 <span style="color: green; font-weight: bold;">(+8.1)</span>  | 27.3 <span style="color: green; font-weight: bold;">(+11.7)</span> | 51.3 <span style="color: green; font-weight: bold;">(+2.1)</span> | 23.0 <span style="color: green; font-weight: bold;">(+4.0)</span>  |
| Web-DINO 2B | 1.3%       | 53.7 <span style="color: green; font-weight: bold;">(+2.9)</span> | 70.7 <span style="color: red; font-weight: bold;">(-2.1)</span>   | 47.3 <span style="color: green; font-weight: bold;">(+0.2)</span> | 56.2 <span style="color: red; font-weight: bold;">(-0.2)</span> | 40.4 <span style="color: green; font-weight: bold;">(+13.6)</span> | 47.5 <span style="color: green; font-weight: bold;">(+24.2)</span> | 29.4 <span style="color: green; font-weight: bold;">(+13.8)</span> | 52.8 <span style="color: green; font-weight: bold;">(+3.6)</span> | 32.0 <span style="color: green; font-weight: bold;">(+13.0)</span> |

Trained on images containing charts, documents, *heavy text* ...

## Q4. Why does web-scale data improve OCR & Chart performance?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

### 1. Huge boost on OCR & Chart

| Method      | % of MC-2B | VQA Evaluator                                                     |                                                                   |                                                                   |                                                                 |                                                                    | Breakdown of OCR & Chart Tasks                                     |                                                                    |                                                                   |                                                                    |
|-------------|------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|
|             |            | AVG                                                               | General                                                           | Knowledge                                                         | Vision Centric                                                  | OCR Chart                                                          | ChartQA                                                            | OCR Bench                                                          | TextVQA                                                           | DocVQA                                                             |
| CLIP 2B     | 100%       | 53.0                                                              | 72.2                                                              | 48.8                                                              | 55.0                                                            | 36.1                                                               | 32.8                                                               | 32.9                                                               | 52.6                                                              | 26.0                                                               |
| Web-DINO 2B | 100%       | 50.8                                                              | 72.8                                                              | 47.1                                                              | 56.4                                                            | 26.8                                                               | 23.3                                                               | 15.6                                                               | 49.2                                                              | 19.0                                                               |
| Web-DINO 2B | 50.3%      | 53.4 <span style="color: green; font-weight: bold;">(+2.6)</span> | 73.0 <span style="color: green; font-weight: bold;">(+0.2)</span> | 51.7 <span style="color: green; font-weight: bold;">(+4.6)</span> | 55.6 <span style="color: red; font-weight: bold;">(-0.8)</span> | 33.2 <span style="color: green; font-weight: bold;">(+6.4)</span>  | 31.4 <span style="color: green; font-weight: bold;">(+8.1)</span>  | 27.3 <span style="color: green; font-weight: bold;">(+11.7)</span> | 51.3 <span style="color: green; font-weight: bold;">(+2.1)</span> | 23.0 <span style="color: green; font-weight: bold;">(+4.0)</span>  |
| Web-DINO 2B | 1.3%       | 53.7 <span style="color: green; font-weight: bold;">(+2.9)</span> | 70.7 <span style="color: red; font-weight: bold;">(-2.1)</span>   | 47.3 <span style="color: green; font-weight: bold;">(+0.2)</span> | 56.2 <span style="color: red; font-weight: bold;">(-0.2)</span> | 40.4 <span style="color: green; font-weight: bold;">(+13.6)</span> | 47.5 <span style="color: green; font-weight: bold;">(+24.2)</span> | 29.4 <span style="color: green; font-weight: bold;">(+13.8)</span> | 52.8 <span style="color: green; font-weight: bold;">(+3.6)</span> | 32.0 <span style="color: green; font-weight: bold;">(+13.0)</span> |

## Q4. Why does web-scale data improve OCR & Chart performance?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

1. Huge boost on OCR & Chart
2. Other categories does not change much (no loss of generality)

| Method      | % of MC-2B | VQA Evaluator                                  |                                                |                                                |                                              |                                                 | Breakdown of OCR & Chart Tasks                  |                                                 |                                                |                                                 |
|-------------|------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|
|             |            | AVG                                            | General                                        | Knowledge                                      | Vision Centric                               | OCR Chart                                       | ChartQA                                         | OCR Bench                                       | TextVQA                                        | DocVQA                                          |
| CLIP 2B     | 100%       | 53.0                                           | 72.2                                           | 48.8                                           | 55.0                                         | 36.1                                            | 32.8                                            | 32.9                                            | 52.6                                           | 26.0                                            |
| Web-DINO 2B | 100%       | 50.8                                           | 72.8                                           | 47.1                                           | 56.4                                         | 26.8                                            | 23.3                                            | 15.6                                            | 49.2                                           | 19.0                                            |
| Web-DINO 2B | 50.3%      | 53.4 <span style="color: green;">(+2.6)</span> | 73.0 <span style="color: green;">(+0.2)</span> | 51.7 <span style="color: green;">(+4.6)</span> | 55.6 <span style="color: red;">(-0.8)</span> | 33.2 <span style="color: green;">(+6.4)</span>  | 31.4 <span style="color: green;">(+8.1)</span>  | 27.3 <span style="color: green;">(+11.7)</span> | 51.3 <span style="color: green;">(+2.1)</span> | 23.0 <span style="color: green;">(+4.0)</span>  |
| Web-DINO 2B | 1.3%       | 53.7 <span style="color: green;">(+2.9)</span> | 70.7 <span style="color: red;">(-2.1)</span>   | 47.3 <span style="color: green;">(+0.2)</span> | 56.2 <span style="color: red;">(-0.2)</span> | 40.4 <span style="color: green;">(+13.6)</span> | 47.5 <span style="color: green;">(+24.2)</span> | 29.4 <span style="color: green;">(+13.8)</span> | 52.8 <span style="color: green;">(+3.6)</span> | 32.0 <span style="color: green;">(+13.0)</span> |

## Q4. Why does web-scale data improve OCR & Chart performance?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

1. Huge boost on OCR & Chart
2. Other categories does not change much (no loss of generality)
3. Beats same-size clip CLIP models, even on OCR & Chart.

| Method      | % of MC-2B | VQA Evaluator                                                     |                                                                   |                                                                   |                                                                 |                                                                    | Breakdown of OCR & Chart Tasks                                     |                                                                    |                                                                   |                                                                    |
|-------------|------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|
|             |            | AVG                                                               | General                                                           | Knowledge                                                         | Vision Centric                                                  | OCR Chart                                                          | ChartQA                                                            | OCR Bench                                                          | TextVQA                                                           | DocVQA                                                             |
| CLIP 2B     | 100%       | 53.0                                                              | 72.2                                                              | 48.8                                                              | 55.0                                                            | 36.1                                                               | 32.8                                                               | 32.9                                                               | 52.6                                                              | 26.0                                                               |
| Web-DINO 2B | 100%       | 50.8                                                              | 72.8                                                              | 47.1                                                              | 56.4                                                            | 26.8                                                               | 23.3                                                               | 15.6                                                               | 49.2                                                              | 19.0                                                               |
| Web-DINO 2B | 50.3%      | 53.4 <span style="color: green; font-weight: bold;">(+2.6)</span> | 73.0 <span style="color: green; font-weight: bold;">(+0.2)</span> | 51.7 <span style="color: green; font-weight: bold;">(+4.6)</span> | 55.6 <span style="color: red; font-weight: bold;">(-0.8)</span> | 33.2 <span style="color: green; font-weight: bold;">(+6.4)</span>  | 31.4 <span style="color: green; font-weight: bold;">(+8.1)</span>  | 27.3 <span style="color: green; font-weight: bold;">(+11.7)</span> | 51.3 <span style="color: green; font-weight: bold;">(+2.1)</span> | 23.0 <span style="color: green; font-weight: bold;">(+4.0)</span>  |
| Web-DINO 2B | 1.3%       | 53.7 <span style="color: green; font-weight: bold;">(+2.9)</span> | 70.7 <span style="color: red; font-weight: bold;">(-2.1)</span>   | 47.3 <span style="color: green; font-weight: bold;">(+0.2)</span> | 56.2 <span style="color: red; font-weight: bold;">(-0.2)</span> | 40.4 <span style="color: green; font-weight: bold;">(+13.6)</span> | 47.5 <span style="color: green; font-weight: bold;">(+24.2)</span> | 29.4 <span style="color: green; font-weight: bold;">(+13.8)</span> | 52.8 <span style="color: green; font-weight: bold;">(+3.6)</span> | 32.0 <span style="color: green; font-weight: bold;">(+13.0)</span> |

## Q4. Why does web-scale data improve OCR & Chart performance?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

1. Huge boost on OCR & Chart
2. Other categories does not change much (no loss of generality)
3. Beats same-size clip CLIP models, even on OCR & Chart.

**The “text” in images contributes to improved OCR & Chart ability, and SSL methods can implicitly learn this from the data.**

| Method      | % of MC-2B | VQA Evaluator                                  |                                                |                                                |                                              |                                                 | Breakdown of OCR & Chart Tasks                  |                                                 |                                                |                                                 |
|-------------|------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|
|             |            | AVG                                            | General                                        | Knowledge                                      | Vision Centric                               | OCR Chart                                       | ChartQA                                         | OCRBench                                        | TextVQA                                        | DocVQA                                          |
| CLIP 2B     | 100%       | 53.0                                           | 72.2                                           | 48.8                                           | 55.0                                         | 36.1                                            | 32.8                                            | 32.9                                            | 52.6                                           | 26.0                                            |
| Web-DINO 2B | 100%       | 50.8                                           | 72.8                                           | 47.1                                           | 56.4                                         | 26.8                                            | 23.3                                            | 15.6                                            | 49.2                                           | 19.0                                            |
| Web-DINO 2B | 50.3%      | 53.4 <span style="color: green;">(+2.6)</span> | 73.0 <span style="color: green;">(+0.2)</span> | 51.7 <span style="color: green;">(+4.6)</span> | 55.6 <span style="color: red;">(-0.8)</span> | 33.2 <span style="color: green;">(+6.4)</span>  | 31.4 <span style="color: green;">(+8.1)</span>  | 27.3 <span style="color: green;">(+11.7)</span> | 51.3 <span style="color: green;">(+2.1)</span> | 23.0 <span style="color: green;">(+4.0)</span>  |
| Web-DINO 2B | 1.3%       | 53.7 <span style="color: green;">(+2.9)</span> | 70.7 <span style="color: red;">(-2.1)</span>   | 47.3 <span style="color: green;">(+0.2)</span> | 56.2 <span style="color: red;">(-0.2)</span> | 40.4 <span style="color: green;">(+13.6)</span> | 47.5 <span style="color: green;">(+24.2)</span> | 29.4 <span style="color: green;">(+13.8)</span> | 52.8 <span style="color: green;">(+3.6)</span> | 32.0 <span style="color: green;">(+13.0)</span> |

# Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data.

3. How do WebSSL models perform on classic vision tasks?

A: It is better than CLIP models and competitive with DINOv2.

4. Why does web-scale data improve OCR & Chart performance?

A: Because SSL models learn from text information embed in images.

# Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data.

3. How do scaled models perform on classic vision tasks?

A: It is better than CLIP models and competitive with DINOv2.

4. Why does web-scale data improve OCR & Chart performance?

A: Because SSL models learn from text information embed in images.

5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?

Q5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?

Q5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?

Hypothesis: SSL models learn features increasingly aligned with language as model size and examples seen increases.

Q5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?

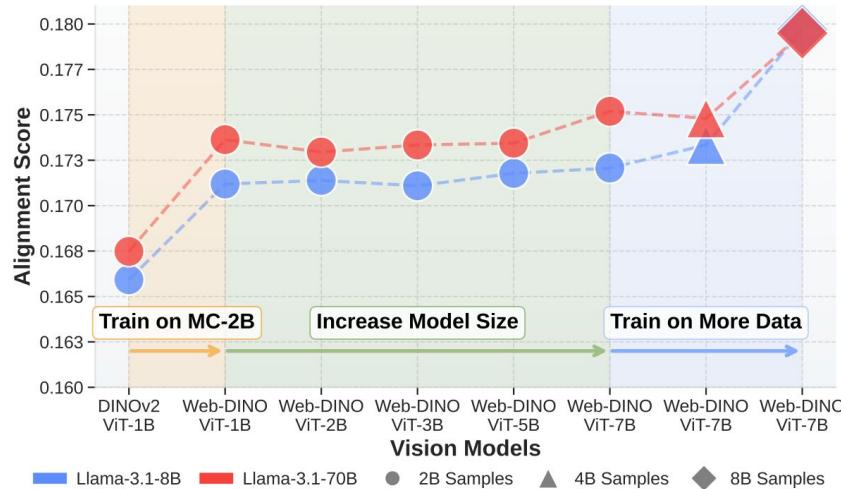
Hypothesis: SSL models learn features increasingly aligned with language as model size and examples seen increases.

Measure its alignment with LLM via “Platonic Hypothesis”

# Platonic Representation Measurements

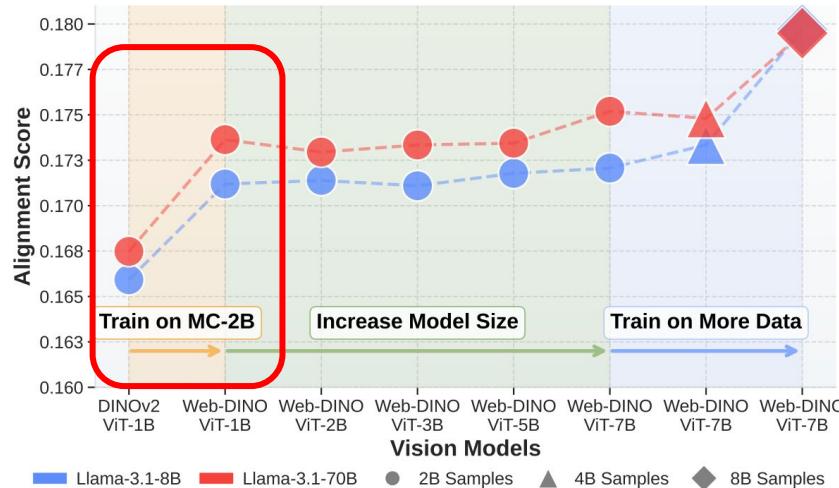
- Frozen visual encoder + off-shelf LLM (no post-training / alignment)
- Uses 1024 Samples from WiT-1024 (A image-text dataset based on Wikipedia)
- Compute the representation from Vision Model ([cls]) and Language Model ([avg])
- For each [Image, Text], compute k=10 nearest neighbors each, measure how many overlap.
  - If 2 neighbors overlap, alignment score =  $2/10 = 0.2$
- Alignment Score is the average alignment score across all samples

## Q5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?



Q5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?

1. Training on more diverse data (MC-2B) lead to better alignment



## Q5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?

1. Training on more diverse data (MC-2B) lead to better alignment
2. Increase model size gradually lead to better alignment



## Q5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?

1. Training on more diverse data (MC-2B) lead to better alignment
2. Increase model size gradually lead to better alignment
3. Training on more data lead to better alignment



Q5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?

1. Training on more diverse data (MC-2B) lead to better alignment
2. Increase model size gradually lead to better alignment
3. Training on more data lead to better alignment

**As SSL scales to larger models or more data, its representation naturally aligns more with off-shelf LLMs**

**... without any explicit alignment!**

# Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data.

3. How do scaled models perform on classic vision tasks?

A: It is better than CLIP models and competitive with DINOv2.

4. Why does web-scale data improve OCR & Chart performance?

A: Because SSL models learn from text information embed in images.

5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?

A: As SSL scales larger or train longer, the representation intrinsically aligns more with off-shelf LLMs, without any explicit alignment.

# How Does WebSSL Compare with SOTA?

# How Does WebSSL Compare with SOTA?

| Model                                |               |                       |     | MLM Evaluator |         |           |             |                |           | Classic Vision Tasks |            |                 |                 |  |
|--------------------------------------|---------------|-----------------------|-----|---------------|---------|-----------|-------------|----------------|-----------|----------------------|------------|-----------------|-----------------|--|
| Method                               | Pretrain Data | Pretrain Samples Seen | Res | AVG           | General | Knowledge | OCR & Chart | Vision-Centric | IN1k lin. | ADE20K lin.          | ADE20K ms. | NYUD lin. 1 (↓) | NYUD lin. 4 (↓) |  |
| <b>Language-Supervised Models</b>    |               |                       |     |               |         |           |             |                |           |                      |            |                 |                 |  |
| SigLIP ViT-SO400M                    | WebLI         | 45.0B                 | 224 | 55.4          | 74.4    | 48.7      | 39.5        | 58.9           | 86.5      | 36.5                 | 38.0       | 0.607           | 0.525           |  |
|                                      |               |                       | 384 | 60.0          | 76.3    | 50.4      | 53.5        | 59.7           | 87.3      | 39.5                 | 47.2       | 0.582           | 0.438           |  |
| SigLIP2 ViT-SO400M                   | WebLI         | 45.0B                 | 224 | 56.3          | 74.4    | 50.7      | 42.1        | 58.1           | 87.5      | 41.1                 | 44.2       | 0.562           | 0.539           |  |
|                                      |               |                       | 384 | 62.0          | 76.6    | 51.9      | 58.4        | 61.0           | 88.1      | 43.5                 | 50.2       | 0.524           | 0.469           |  |
| MetaCLIP ViT-G                       | MetaCLIP      | 12.8B                 | 224 | 54.8          | 75.5    | 48.2      | 37.3        | 58.4           | 86.4      | 38.0                 | 46.7       | 0.524           | 0.415           |  |
| <b>Visual Self-Supervised Models</b> |               |                       |     |               |         |           |             |                |           |                      |            |                 |                 |  |
| MAE ViT-H                            | ImageNet-1k   | 2.0B                  | 224 | 45.2          | 64.6    | 43.9      | 20.6        | 51.7           | 76.6      | 33.3                 | 30.7       | 0.517           | 0.483           |  |
| I-JEPA ViT-H                         | ImageNet-22k  | 0.9B                  | 224 | 44.7          | 65.4    | 43.9      | 21.2        | 48.4           | 68.8      | 31.6                 | 34.6       | 0.548           | 0.520           |  |
| DINOv2 ViT-g                         | LVD-142M      | 1.9B                  | 518 | 47.9          | 70.2    | 45.0      | 21.2        | 55.3           | 86.0      | 49.0                 | 53.0       | 0.344           | 0.298           |  |
| Web-DINO ViT-7B                      | MC-2B         | 8.0B                  | 224 | 55.2          | 74.5    | 48.0      | 39.4        | 59.1           | 86.5      | 42.1                 | 52.6       | 0.491           | 0.376           |  |
|                                      |               |                       | 378 | 57.4          | 73.9    | 47.7      | 50.4        | 57.7           | 86.3      | 42.3                 | 53.1       | 0.498           | 0.366           |  |
|                                      |               |                       | 518 | 59.9          | 75.5    | 48.2      | 55.1        | 60.8           | 86.4      | 42.6                 | 52.8       | 0.490           | 0.362           |  |

# How Does WebSSL Compare with SOTA?

1. WebSSL is competitive with CLIP models on VQA, even when using less data.



| Model                                |               |                       |     | MLM Evaluator |         |           |             |                | Classic Vision Tasks |             |            |                 |                 |
|--------------------------------------|---------------|-----------------------|-----|---------------|---------|-----------|-------------|----------------|----------------------|-------------|------------|-----------------|-----------------|
| Method                               | Pretrain Data | Pretrain Samples Seen | Res | Avg           | General | Knowledge | OCR & Chart | Vision-Centric | IN1k lin.            | ADE20K lin. | ADE20K ms. | NYUD lin. 1 (↓) | NYUD lin. 4 (↓) |
| <b>Language-Supervised Models</b>    |               |                       |     |               |         |           |             |                |                      |             |            |                 |                 |
| SigLIP ViT-SO400M                    | WebLI         | 45.0B                 | 224 | 55.4          | 74.4    | 48.7      | 39.5        | 58.9           | 86.5                 | 36.5        | 38.0       | 0.607           | 0.525           |
|                                      |               |                       | 384 | 60.0          | 76.3    | 50.4      | 53.5        | 59.7           | 87.3                 | 39.5        | 47.2       | 0.582           | 0.438           |
| SigLIP2 ViT-SO400M                   | WebLI         | 45.0B                 | 224 | 56.3          | 74.4    | 50.7      | 42.1        | 58.1           | 87.5                 | 41.1        | 44.2       | 0.562           | 0.539           |
|                                      |               |                       | 384 | 62.0          | 76.6    | 51.9      | 58.4        | 61.0           | 88.1                 | 43.5        | 50.2       | 0.524           | 0.469           |
| MetaCLIP ViT-G                       | MetaCLIP      | 12.8B                 | 224 | 54.8          | 75.5    | 48.2      | 37.3        | 58.4           | 86.4                 | 38.0        | 46.7       | 0.524           | 0.415           |
| <b>Visual Self-Supervised Models</b> |               |                       |     |               |         |           |             |                |                      |             |            |                 |                 |
| MAE ViT-H                            | ImageNet-1k   | 2.0B                  | 224 | 45.2          | 64.6    | 43.9      | 20.6        | 51.7           | 76.6                 | 33.3        | 30.7       | 0.517           | 0.483           |
| I-JEPA ViT-H                         | ImageNet-22k  | 0.9B                  | 224 | 44.7          | 65.4    | 43.9      | 21.2        | 48.4           | 68.8                 | 31.6        | 34.6       | 0.548           | 0.520           |
| DINOv2 ViT-g                         | LVD-142M      | 1.9B                  | 518 | 47.9          | 70.2    | 45.0      | 21.2        | 55.3           | 86.0                 | 49.0        | 53.0       | 0.344           | 0.298           |
| Web-DINO ViT-7B                      | MC-2B         | 8.0B                  | 224 | 55.2          | 74.5    | 48.0      | 39.4        | 59.1           | 86.5                 | 42.1        | 52.6       | 0.491           | 0.376           |
|                                      |               |                       | 378 | 57.4          | 73.9    | 47.7      | 50.4        | 57.7           | 86.3                 | 42.3        | 53.1       | 0.498           | 0.366           |
|                                      |               |                       | 518 | 59.9          | 75.5    | 48.2      | 55.1        | 60.8           | 86.4                 | 42.6        | 52.8       | 0.490           | 0.362           |

# How Does WebSSL Compare with SOTA?

1. WebSSL is competitive with CLIP models on VQA, even when using less data.
2. And better than CLIP models on classic vision.



| Model                                |               |                       |       | MLM Evaluator |         |           |             |                | Classic Vision Tasks |             |            |                 |                 |       |       |  |
|--------------------------------------|---------------|-----------------------|-------|---------------|---------|-----------|-------------|----------------|----------------------|-------------|------------|-----------------|-----------------|-------|-------|--|
| Method                               | Pretrain Data | Pretrain Samples Seen | Res   | Avg           | General | Knowledge | OCR & Chart | Vision-Centric | IN1k lin.            | ADE20K lin. | ADE20K ms. | NYUD lin. 1 (↓) | NYUD lin. 4 (↓) |       |       |  |
| <b>Language-Supervised Models</b>    |               |                       |       |               |         |           |             |                |                      |             |            |                 |                 |       |       |  |
| SigLIP ViT-SO400M                    |               | WebLI                 | 45.0B | 224           | 55.4    | 74.4      | 48.7        | 39.5           | 58.9                 | 86.5        | 36.5       | 38.0            | 0.607           | 0.525 |       |  |
|                                      |               |                       |       | 384           | 60.0    | 76.3      | 50.4        | 53.5           | 59.7                 | 87.3        | 39.5       | 47.2            | 0.582           | 0.438 |       |  |
| SigLIP2 ViT-SO400M                   |               | WebLI                 | 45.0B | 224           | 56.3    | 74.4      | 50.7        | 42.1           | 58.1                 | 87.5        | 41.1       | 44.2            | 0.562           | 0.539 |       |  |
|                                      |               |                       |       | 384           | 62.0    | 76.6      | 51.9        | 58.4           | 61.0                 | 88.1        | 43.5       | 50.2            | 0.524           | 0.469 |       |  |
| MetaCLIP ViT-G                       |               | MetaCLIP              | 12.8B | 224           | 54.8    | 75.5      | 48.2        | 37.3           | 58.4                 | 86.4        | 38.0       | 46.7            | 0.524           | 0.415 |       |  |
| <b>Visual Self-Supervised Models</b> |               |                       |       |               |         |           |             |                |                      |             |            |                 |                 |       |       |  |
| MAE ViT-H                            | ImageNet-1k   | 2.0B                  | 224   | 45.2          | 64.6    | 43.9      | 20.6        | 51.7           | 76.6                 | 33.3        | 30.7       | 0.517           | 0.483           |       |       |  |
| I-JEPA ViT-H                         | ImageNet-22k  |                       |       | 0.9B          | 224     | 44.7      | 65.4        | 43.9           | 21.2                 | 48.4        | 68.8       | 31.6            | 34.6            | 0.548 | 0.520 |  |
| DINOv2 ViT-g                         | LVD-142M      | 1.9B                  | 518   | 47.9          | 70.2    | 45.0      | 21.2        | 55.3           | 86.0                 | 49.0        | 53.0       | 0.344           | 0.298           |       |       |  |
| Web-DINO ViT-7B                      |               |                       |       | 224           | 55.2    | 74.5      | 48.0        | 39.4           | 59.1                 | 86.5        | 42.1       | 52.6            | 0.491           | 0.376 |       |  |
| Web-DINO ViT-7B                      |               |                       |       | 378           | 57.4    | 73.9      | 47.7        | 50.4           | 57.7                 | 86.3        | 42.3       | 53.1            | 0.498           | 0.366 |       |  |
|                                      |               |                       |       | 518           | 59.9    | 75.5      | 48.2        | 55.1           | 60.8                 | 86.4        | 42.6       | 52.8            | 0.490           | 0.362 |       |  |

# How Does WebSSL Compare with SOTA?

WebSSL also improves with higher resolution (more room for improvement!)

| Model                                |               |                       |     | MLLM Evaluator |         |           |             |                |           | Classic Vision Tasks |            |                 |                 |  |
|--------------------------------------|---------------|-----------------------|-----|----------------|---------|-----------|-------------|----------------|-----------|----------------------|------------|-----------------|-----------------|--|
| Method                               | Pretrain Data | Pretrain Samples Seen | Res | AVG            | General | Knowledge | OCR & Chart | Vision-Centric | IN1k lin. | ADE20K lin.          | ADE20K ms. | NYUD lin. 1 (↓) | NYUD lin. 4 (↓) |  |
| <b>Language-Supervised Models</b>    |               |                       |     |                |         |           |             |                |           |                      |            |                 |                 |  |
| SigLIP ViT-SO400M                    | WebLI         | 45.0B                 | 224 | 55.4           | 74.4    | 48.7      | 39.5        | 58.9           | 86.5      | 36.5                 | 38.0       | 0.607           | 0.525           |  |
|                                      |               |                       | 384 | 60.0           | 76.3    | 50.4      | 53.5        | 59.7           | 87.3      | 39.5                 | 47.2       | 0.582           | 0.438           |  |
| SigLIP2 ViT-SO400M                   | WebLI         | 45.0B                 | 224 | 56.3           | 74.4    | 50.7      | 42.1        | 58.1           | 87.5      | 41.1                 | 44.2       | 0.562           | 0.539           |  |
|                                      |               |                       | 384 | 62.0           | 76.6    | 51.9      | 58.4        | 61.0           | 88.1      | 43.5                 | 50.2       | 0.524           | 0.469           |  |
| MetaCLIP ViT-G                       | MetaCLIP      | 12.8B                 | 224 | 54.8           | 75.5    | 48.2      | 37.3        | 58.4           | 86.4      | 38.0                 | 46.7       | 0.524           | 0.415           |  |
| <b>Visual Self-Supervised Models</b> |               |                       |     |                |         |           |             |                |           |                      |            |                 |                 |  |
| MAE ViT-H                            | ImageNet-1k   | 2.0B                  | 224 | 45.2           | 64.6    | 43.9      | 20.6        | 51.7           | 76.6      | 33.3                 | 30.7       | 0.517           | 0.483           |  |
| I-JEPA ViT-H                         | ImageNet-22k  | 0.9B                  | 224 | 44.7           | 65.4    | 43.9      | 21.2        | 48.4           | 68.8      | 31.6                 | 34.6       | 0.548           | 0.520           |  |
| DINOv2 ViT-g                         | LVD-142M      | 1.9B                  | 518 | 47.9           | 70.2    | 45.0      | 21.2        | 55.3           | 86.0      | 49.0                 | 53.0       | 0.344           | 0.298           |  |
| Web-DINO ViT-7B                      | MC-2B         | 8.0B                  | 224 | 55.2           | 74.5    | 48.0      | 39.4        | 59.1           | 86.5      | 42.1                 | 52.6       | 0.491           | 0.376           |  |
|                                      |               |                       | 378 | 57.4           | 73.9    | 47.7      | 50.4        | 57.7           | 86.3      | 42.3                 | 53.1       | 0.498           | 0.366           |  |
|                                      |               |                       | 518 | 59.9           | 75.5    | 48.2      | 55.1        | 60.8           | 86.4      | 42.6                 | 52.8       | 0.490           | 0.362           |  |

# Takeaways

- Visual SSL improves *w.r.t* to model and data sizes when we use VQA as evaluation

# Takeaways

- Visual SSL improves *w.r.t* to model and data sizes when we use VQA as evaluation
- The gap between SSL and CLIP models partly (largely) comes from **data**, not language supervision

# Takeaways

- Visual SSL improves *w.r.t* to model and data sizes when we use VQA as evaluation
- The gap between SSL and CLIP models partly (largely) come from **data**, not language supervision
- Visual SSL is competitive with CLIP models on VQA, even on OCR & Chart

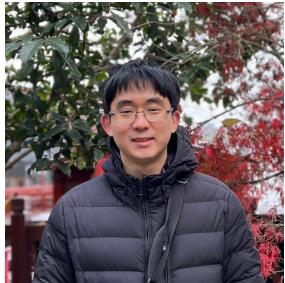
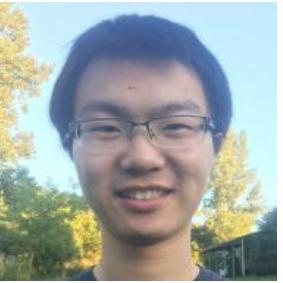
# Takeaways

- Visual SSL improves *w.r.t* to model and data sizes when we use VQA as evaluation
- The gap between SSL and CLIP models partly (largely) come from data not language supervision
- Visual SSL is competitive with CLIP models on VQA, even on OCR & Chart
- **Visual SSL has its unique benefits**
  - Vision-centric VQA
  - Classic vision benchmarks

# Takeaways

- Visual SSL improves *w.r.t* to model and data sizes when we use VQA as evaluation
- The gap between SSL and CLIP models partly (largely) come from data not language supervision
- Visual SSL is competitive with CLIP models on VQA, even on OCR & Chart
- Visual SSL has its unique benefits
  - Vision-centric VQA
  - Classic vision benchmarks
- **We can continue to train better SSL models! (Better / More Data, Larger Model, ...)**

# Thanks to Our Amazing Team!!!



# Thank you!

Please visit Poster #25 (Tuesday Session 1)

Open-sourced at:

<https://davidfan.io/webssl/>

<https://github.com/facebookresearch/webssl>