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NeRF – Neural Radiance Fields
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[1] Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." Communications of the ACM 65.1 (2021): 99-106.

Synthesizes novel views of 3D scenes from 2D images by representing the scene as networks



NeRF – Neural Radiance Fields
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• Limited to RGB domain

• Traditional NeRFs capture geometry and appearance but lack material information

• Needs external features/models for any kind of segmentation

Synthesizes novel views of 3D scenes from 2D images by representing the scene as networks



Limitations on RGB

Metamerism
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Two different materials match under one light but mismatch under another



Limitations on RGB
Why material understanding matters?

Robotics
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Metamerism
Two different materials match in one light, mismatch in another



Spectral Imaging

More bands create a spectral cube 
(x, y, λ) instead of a 3-channel 

image
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Captures images beyond the visible by
sampling light in many bands, so each

pixel encodes a rich spectral profile

Each material has a 
representative spectral 

signature

RGB

3 separated bands

MULTISPECTRAL

N separated bands

HYPERSPECTRAL

Continuous Spectrum



Spectral Imaging: Applications
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Material Segmentation Classification

[1] https://www.advian.fi/en/what-is-hyperspectral-imaging



Decomposes each pixel’s spectrum into materials 
(endmembers) and their abundances

Endmembers
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Spectral Unmixing

Mixed pixel

Scene

Hyperspectral cube

Abundances



Endmembers
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Spectral Unmixing

Abundances

Each spectral pixel is a 
linear combination of:

Endmembers Matrix Abundances vector

The following constraints must be satisfied:

Non-negativity

Sum-to-One

Box constraint

Decomposes each pixel’s spectrum into materials 
(endmembers) and their abundances



SpectralNeRF [2]

[1] Chen, Gerry, et al. "Hyperspectral neural radiance fields." arXiv preprint arXiv:2403.14839 (2024).
[2] Li, Ru, et al. "Spectralnerf: Physically based spectral rendering with neural radiance field." AAAI 2024.
[3] Thirgood, Christopher, et al. "Hypergs: Hyperspectral 3d gaussian splatting." Proceedings of the Computer Vision and Pattern Recognition Conference. 2025.

HS-NeRF [1]

• These approaches do not explicitly leverage 
the inherent structure of spectral imaging, 
e.g., materials have representative spectral 
signatures
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3D Method with Spectral Imaging
HyperGS [3]

• None of them allow for material segmentation
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Spectral + Unmixing + 3D = Material-aware NeRF 



UnMix-NeRF is divided into diffuse and specular reflectance components.
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UnMix-NeRF



▪ Diffuse = material-intrinsic, view-independent
▪ Specular = illumination-dependent, view-dependent

View direction
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Diffuse vs Specular reflection

[1] Jo, Sangho, et al. "S-LIGHT: Synthetic dataset for the separation of diffuse and specular reflection images." Sensors 24.7 (2024): 2286. 



Spectral Unmixing (Diffuse) Field Diffuse Reflectance component:
(view-independent)
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UnMix-NeRF



Specular Field Specular Reflectance component:
(view-dependent)
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UnMix-NeRF



Loss Function
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UnMix-NeRF



Unsupervised Material Segmentation via Cluster Probe

Given the learned endmembers:
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UnMix-NeRF

Key idea: Use spectral unmixing outputs 
(abundances and endmembers) to segment 
materials



Unsupervised Material Segmentation via Cluster Probe

Each ray is assigned to the material with the highest probability:
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UnMix-NeRF

Given the learned endmembers:

Key idea: Use spectral unmixing outputs 
(abundances and endmembers) to segment 
materials
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Experimental Setup: Datasets

NeSpoF
• 21 spectral bands
• 450nm to 560 nm 

• 4 scenes
• Synthetic dataset

Surface Optics

• 128 spectral bands
• 370nm to 1100 nm 

• 4 scenes
• Real dataset

BaySpec

• 140 spectral bands
• 400nm to 1110 nm 

• 3 scenes
• Real dataset
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Experimental Setup

We extended the NeSpoF dataset by 
providing ground-truth material labels for all 

the synthetic scenes

NeSpoF

Surface Optics

BaySpec



Hotdog Cbox-sphere

Cbox-dragon Ajar
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Quantitative Results: NeSpoF



Best on Rosemary and Basil (+2.14/+3.91 PSNR vs. HyperGS) with
lowest SAM and RMSE, confirming accurate spectral reconstruction

across diverse materials

Rosemary Scene

Basil Scene
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Quantitative Results: Surface Optics



Consistently best across scenes, highest PSNR/SSIM and lowest
SAM/RMSE. Explicitly modeling spectral unmixing in NeRF yields

more accurate spectra than per-pixel regression

Anacampseros Caladium Pinecone
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Quantitative Results: BaySpec



Frame number 51 in the Caladium scene

Our method achieves the most accurate spectral predictions, 
significantly reducing reconstruction artifacts and preserving fine-

grained spectral details
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Qualitative Results: BaySpec



Spectral Reflectances

450 nm 500 nm 550 nm 600 nm 650 nm

Learned Material AbundancesSpecular Reflectance
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Qualitative Results: Hotdog



RGB Unsupervised Material Segmentation Scene Editing
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Qualitative Results: Hotdog



Visualization of Learned Material Abundances

RGB Unsupervised Material Segmentation PCA Visualization
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Qualitative Results: Ajar
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Spectral segmentation emerges 
from endmember estimation, 

materials separate via an
unsupervised cluster probe, with

no labels

Take Aways

UnMix-NeRF is the first 3D NeRF
to integrate spectral unmixing, 

jointly learning endmembers and 
abundances for material-aware

novel view synthesis

Endmember-level editing enables
intuitive scene control, letting you
swap/retint materials consistently

across all novel views



Thank You!

Project Page
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