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NeRF — Neural Radiance Fields

Synthesizes novel views of 3D scenes from 2D images by representing the scene as networks
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[1] Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." Communications of the ACM 65.1 (2021): 99-106.
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NeRF — Neural Radiance Fields

Synthesizes novel views of 3D scenes from 2D images by representing the scene as networks

 Limited to RGB domain

e Traditional NeRFs capture geometry and appearance but lack material information

« Needs external features/models for any kind of segmentation
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Limitations on RGB

Metamerism

Two different materials match under one light but mismatch under another

Fabian Perez 4



Limitations on RGB

Why material understanding matters?

Robotics

Metamerism

Two different materials match in one light, mismatch in another

plastic
or

ceramic
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Spectral Imaging

Electromagnetic Spectrum
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Captures images beyond the visible by
sampling light in many bands, so each
pixel encodes a rich spectral profile
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Spectral Imaging: Applications

[1] https://www.advian.filen/what-is-hyperspectral-imaging
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Spectral Unmixing
Decomposes each pixel’'s spectrum into materials

Hyperspectral cube (endmembers) and their abundances

Mixed pixel

Abundances
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Spectral Unmixing

Decomposes each pixel’'s spectrum into materials
(endmembers) and their abundances

Each spectral pixel is a
linear combination of:
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3D Method with Spectral Imaging

HS-NeRF [1]
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[1] Chen, Gerry, et al. "Hyperspectral neural radiance fields." arXiv preprint arXiv:2403.14839 (2024).
[2] Li, Ry, et al. "Spectralnerf: Physically based spectral rendering with neural radiance field." AAAI 2024.

)
1
Hyperspectral IS amaad
Adaptive density ! 1
function 1 ! Hyperspectral
1

: Differentiable )
----------- 4 ! Tile Rasterizer P
__________ \/ ke |
1 i A"
Cloud of Latent \l Projection : .
Hyperspectral 3D ;
Gaussians _\H :
O *
O !A\
{posy, , ,
®

Colour prediction MLP,

__________

* These approaches do not explicitly leverage
the inherent structure of spectral imaging,
e.g., materials have representative spectral
signatures

 None of them allow for material segmentation

[3] Thirgood, Christopher, et al. "Hypergs: Hyperspectral 3d gaussian splatting." Proceedings of the Computer Vision and Pattern Recognition Conference. 2025.
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Spectral + Unmixing + 3D = Material-aware NeRF

UnVlix-NeRF
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UnMix-NeRF
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UnMix-NeRF is divided into diffuse and specular reflectance components.
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Diffuse vs Specular reflection

Incident Radiation View direction
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= Diffuse = material-intrinsic, view-independent
= Specular = illumination-dependent, view-dependent

[1] Jo, Sangho, et al. "S-LIGHT: Synthetic dataset for the separation of diffuse and specular reflection images." Sensors 24.7 (2024): 2286.
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UnMix-NeRF
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UnMix-NeRF
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UnMix-NeRF

@ @ E

Sigmoid  Soft O—b «—
g oftmax Scaling 4O, E Endmembers

Product Sum o~ l ek
a G
Abundances i o
h Density a
:C, y& z Tint ‘ §/\ R
‘ Position lefuse l — g
Reflectance Rendering ) % L
Density C T ,:: “ ,
Okam 4 S Wavelength
Tinted
/ Reflectance
0,¢ —»( 1 C — g.t.
V-iewi_ng » @_’ Specgar
Direction [ ] Reflectance Rend .
1 erlng 0SS
i Lopec = Y [C(x) — C*(x)|I3
Loss Function = ’
. 2 L = )\Spec Lspec + )\rgb Lrgb
Ligh = ) [|Cran(r) = G (1)

reR

Fabian Perez



UnMix-NeRF

Unsupervised Material Segmentation via Cluster Probe

Key idea: Use spectral unmixing outputs
(abundances and endmembers) to segment

materials

Given the learned endmembers:

o ETC(r)
P(r) = TElCw)
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UnMix-NeRF

Unsupervised Material Segmentation via Cluster Probe

Key idea: Use spectral unmixing outputs
(abundances and endmembers) to segment

materials

E

Endmembers

Given the learned endmembers:
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p(r) = softmax ( |E|T|g$| )

Each ray is assigned to the material with the highest probability: No manU'C}\ Zi\se\‘ges from

m(r) = arg m]?,xpk(r) —
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Experimental Setup: Datasets

NeSpoF
» 21 spectral bands <+ 4 scenes
« 450nmto 560 nm <+ Synthetic dataset

Surface Optics

« 128 spectral bands ¢ 4 scenes
« 370nmto 1100 nm + Real dataset

BaySpec
» 140 spectral bands ¢ 3 scenes
* 400nmto1110nm < Real dataset
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Experimental Setup

We extended the NeSpoF dataset by
providing ground-truth material labels for all
the synthetic scenes
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Quantitative Results: NeSpoF

Hotdog Cbox-sphere
Method Scene PSNR1 RMSE | Time
HS-NeRF* avg. 26.0 0.04 5 hours
NeSpoF avg. 33.0 0.02 11.9 hours
ajar 38.09 0.01 43 min
hotdog 34.47 0.01 45 min
Chox-d A Ours cbox-dragon 32.21 0.02 45 min
S Jar cbox-sphere  27.96 0.03 44 min
avg. 33.2 0.02 44 min

Table 2. Comparison on the NeSpoF dataset. HS-NeRF* and Ne-
SpoF report averaged results (avg.) over 4 scenes; for Ours, per-
scene results and the overall averaged metrics are provided.
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Quantitative Results: Surface Optics

Rosemary Scene

Method Rosemary Basil

PSNR 1+ SSIMT SAMJ| RMSE| PSNR 1 SSIMtT SAM| RMSE]
NeRF 8.42 0.7461 0.0284 0.3560 9.91 0.5534 0.0769 0.5256
MipNeRF 13.64* 0.5684* 1000* 0.2083* 10.11 0.5878 0.0728 0.5334
TensoRF 12.1  0.73351 0.0212 0.2662 1523  0.5811 0.0435 0.3628
Nerfacto 18.66  0.8836 0.0078 0.1205 16.54 0.7915 0.0176  0.1655
MipNerf360  8.47 0.7518 0.0876  0.3825 1392 0.8584 0.0497 0.2035
HS-NeRF *18.60  *0.887 *0.0077 *0.1187 *16.81 *0.771 *0.0172 *0.1587
3DGS 2556  0.9695 0.0028 0.0534 21.19 0.9385 0.0101 0.0897
HyperGS 26.77 09845 0.0021 0.0445  25.30 0.9503 0.00514 0.0569
Ours 2891 09355 0.0019 0.0332 29.21 0.9584 0.0043 0.0364 Basil Scene

Best on Rosemary and Basil (+2.14/+3.91 PSNR vs. HyperGS) with
lowest SAM and RMSE, confirming accurate spectral reconstruction
across diverse materials
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Quantitative Results: BaySpec

Method Pinecone Caladium Anacampseros

PSNR 71 SSIMT SAM| RMSE| PSNR 1 SSIM* SAM| RMSE| PSNR 1 SSIMT SAMJ| RMSE.]
NeRF 22.82 0.6113 0.0446 0.0728 23.12 0.58348 0.0491 0.0709 24.12 0.6220 0.0384 0.0623
MipNeRF 21.45 0.5738 0.0410 0.0856 23.36 0.5935 0.0487 0.0685 23.43 0.6160 0.0408 0.0786
TensoRF 24.12 0.6454 0.0593 0.0625 24.79 0.6424 0.0516 0.0577 25.07 0.6569 0.0394 0.0558
Nerfacto 15.36 0.4935 0.0707 0.1709 20.67 0.6208 0.0529 0.0945 21.32 0.6423 0.0417 0.0867
MipNeRF360 20.93 0.7355 0.0279 0.0507 26.93 0.7371 0.0332 0.0461 26.73 0.7601 0.0230 0.0461
HS-NeRF 20.07 0.581 0.0725 0.1521 19.084 0.705 0.0533 0.0902 20.32 0.7260 0.0345 0.0789
3DGS 22.65 0.6039 0.0668 0.0819 23.50 0.7131 0.2889 0.0758 22.59 0.5786 0.0447 0.0853
HyperGS 27.0 0.7509 0.0309 0.0447 27.70 0.8354 0.0271 0.0414 26.62 0.7545 0.0183 0.0460
Ours 27.13 0.8174  0.0287 0.0429 30.08 0.8541 0.0237 0.0312 28.20 0.7612 0.0154 0.0392

Anacampseros Caladium Pinecone

Consistently best across scenes, highest PSNR/SSIM and lowest
SAM/RMSE. Explicitly modeling spectral unmixing in NeRF yields
more accurate spectra than per-pixel regression
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Qualitative Results

MipNerf360 UnMix-NeRF (Ours

TensoRF

Channel 70 Image

MRAE Heatmap

0.00

Frame number 51 in the Caladium scene

Our method achieves the most accurate spectral predictions,
significantly reducing reconstruction artifacts and preserving fine-
grained spectral details




Qualitative Results: Hotdog

Spectral Reflectances

450 nm 500 nm 550 nm 600 nm 650 nm

Specular Reflectance Learned Material Abundances
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Qualitative Results: Hotdog

RGB Unsupervised Material Segmentation Scene Editing



Qualitative Results: Ajar

Visualization of Learned Material Abundances

RGB Unsupervised Material Segmentation PCA Visualization

Fabian Perez



Take Aways

UnMix-NeRF is the first 3D NeRF Spectral segmentation emerges o\
. . . Endmember-level editing enables

to integrate spectral unmixing, from endmember estimation, . :
- . ] ) intuitive scene control, letting you

jointly learning endmembers and materials separate via an . . .
: , , swap/retint materials consistently

abundances for material-aware unsupervised cluster probe, with .
16 labels across all novel views

novel view synthesis
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