

Learning Robust Image Watermarking with Lossless Cover Recovery

Jiale Chen, Wei Wang*, Chongyang Shi, Li Dong*, Xiping Hu*

Does a watermark necessarily cause irreversible damage to an image?

Most existing watermarking methods embed watermarks by adding irremovable perturbations to the cover image, causing permanent distortion. In this work, we propose a Cover-Recoverable WaterMark (CRMark). CRMark can losslessly recover the cover image and watermark in lossless channels and enables robust watermark extraction in lossy channels.

- a) CRMark employs an integer Invertible Watermark Network (iIWN) to achieve a lossless and invertible mapping between the cover image-watermark pair and the stego image.
- b) in **training**, CRMark uses an encoder-noise-layer-decoder architecture to enhance robustness against various distortions.
- c) In **inference**, the cover image and watermark are first mapped to an overflowed stego image and a latent variable, which are then losslessly compressed by arithmetic coding and embedded into the clipped stego image via reversible data hiding.
- d) For extraction, in lossy channels, the noisy stego image can be directly inverted through iIWN to recover the watermark; in lossless channels, the latent variable and full stego image are first restored using reversible data hiding, followed by watermark extraction via iIWN.

Loss functions

Image loss $\mathcal{L}_s = \text{MSE}(\mathbf{I}^{\text{stego}}, \mathbf{I}_{\text{org}})$, $\mathcal{L}_l = \text{LPIPS}(\mathbf{I}^{\text{stego}}, \mathbf{I}_{\text{org}})$,

regularization loss $\mathcal{L}_z = \text{MSE}(\mathbf{z}, \mathbf{0})$,

watermark loss $\mathcal{L}_w = \text{MSE}(\hat{\mathbf{w}}, \mathbf{w})$,

$\mathbf{I}^{\text{stego}}_+ = \text{relu}(\mathbf{I}^{\text{stego}} - 255)$ $\mathcal{L}_p = \text{MSE}(\mathbf{I}^{\text{stego}}_+, \mathbf{0}) + \text{MSE}(\mathbf{I}^{\text{stego}}_-, \mathbf{0})$,

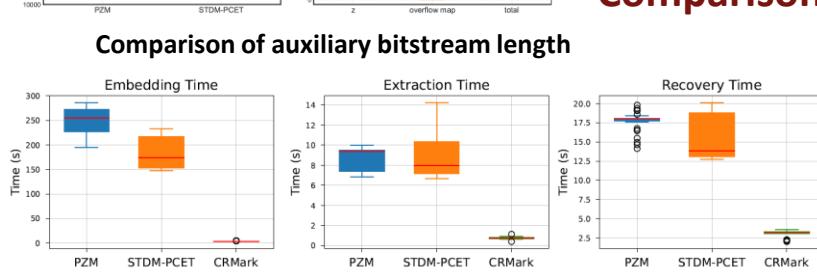
$\mathbf{I}^{\text{stego}}_- = \text{relu}(0 - \mathbf{I}^{\text{stego}})$

under/overflow penalty loss

$\mathcal{L} = \lambda_s \cdot \mathcal{L}_s + \lambda_l \cdot \mathcal{L}_l + \lambda_z \cdot \mathcal{L}_z + \lambda_p \cdot \mathcal{L}_p + \lambda_w \cdot \mathcal{L}_w$,

Total loss

- a) **Image loss** is used to enhance the imperceptibility of the watermark.
- b) **Regularization loss** prevents model parameters from becoming too large, which could cause overflow during inference and prevent perfect recovery of the cover image.
- c) **Watermark loss** ensures robust extraction of the watermark under various attacks.
- d) **Overflow penalty** penalizes pixel values in the stego image that fall outside the $[0, 255]$ range, reducing the length of the auxiliary bitstream for encoding.


Robustness comparison

Methods	JPEG(Q_f)			Gaussian Blur(σ)		Gaussian Noise(σ)			
	50	70	90	5.0	6.0	7.0	0.05	0.15	0.25
STDM ^T [31]	100.0	100.0	100.0	53.76	50.46	49.71	99.66	92.79	74.33
PZM ^T [30]	100.0	100.0	100.0	61.92	54.31	50.12	99.86	88.71	62.97
FINT [11]	98.64	99.14	99.40	47.98	47.58	47.73	98.88	92.28	83.42
MBRS ^T [19]	97.68	99.95	100.0	87.05	74.65	62.95	99.99	97.58	90.18
R-CRMark ^T	93.33	96.06	96.84	81.18	73.05	66.64	95.30	92.30	85.00
CRMark ^T	99.27	100.0	100.0	98.70	97.11	93.87	100.0	97.59	88.87
CRMark-R ^T	99.31	100.0	100.0	98.77	97.00	93.83	100.0	97.56	89.16
Methods	0.3	0.5	0.7	0.3	0.5	0.7	11	13	15
STDM ^T [31]	56.46	49.81	49.48	97.98	87.24	64.01	77.18	69.82	63.76
PZM ^T [30]	49.71	49.61	50.09	99.98	97.72	71.45	79.81	73.71	68.18
FINT [11]	72.01	62.73	57.41	98.04	94.99	88.38	53.93	50.35	49.50
MBRS ^T [19]	99.77	96.62	82.58	99.99	99.42	96.61	97.08	85.74	69.00
R-CRMark ^T	95.02	87.63	74.42	93.98	84.03	69.81	94.36	90.73	85.08
CRMark ^T	99.86	99.06	95.53	99.98	97.75	92.35	99.41	98.83	97.52
CRMark-R ^T	99.85	99.28	95.88	99.99	97.68	92.40	99.39	98.77	97.61

Comparison of PSNR and SSIM

Method	SSIM	PSNR
STDM ^T [31]	0.9603 ± 0.0195	36.54 ± 1.77
PZM ^T [30]	0.9859 ± 0.0078	38.17 ± 1.78
FINT ^T [11]	0.9988 ± 0.0015	39.74 ± 2.49
MBRS ^T [19]	0.9996 ± 0.0002	40.73 ± 1.67
R-CRMark ^T	0.9971 ± 0.0046	33.92 ± 5.01
CRMark ^T	0.9995 ± 0.0005	40.95 ± 1.24
CRMark-R ^T	0.9995 ± 0.0005	40.90 ± 1.23

Efficiency Comparison

Comparison of time cost

Effect of λ_p on bitstream length for $\lambda_p \in \{0, 10^2, 10^4, 10^6\}$. Length decreases by $14.18 \times$ at $\lambda_p = 10^6$ compared to $\lambda_p = 0$.

Acknowledgement: This work was supported by the National Natural Science Foundation of China (62171244), Guangdong Provincial Key Laboratory (Grant 2023B1212060076), and Innovation Team Project of Guangdong Province of China (No. 2024KCXTD017).