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Low-light Image Enhancement

Motivation:
® [ow-light image Enhancement 1s a highly 1ll-posed task.
® Additional information can help the performance, so-called “reference”.
® Data collected from other devices, but 1t’s not very practical, e.g., [1].

( (a) Preprocessing (Sec. 4.1) \I ((c) Holistic-Regional Fusion Branch (Sec. 4.3)
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[1] Liang G, Chen K, Li H, et al. Towards robust event-guided low-light image enhancement: a large-scale real-world event- ,
image dataset and novel approach[C] CVPR2024



Low-light Image Enhancement

Motivation:
® [ow-light image Enhancement 1s a highly 1ll-posed task.
® Additional information can help the performance, so-called “reference”.
® Pre-trained models, e.g., [2].

[2] Wu Y, Pan C, Wang G, et al. Learning semantic-aware knowledge guidance for low-light image enhancement[C] CVPR2023.



Low-light Image Enhancement

Motivation:
® [ow-light image Enhancement 1s a highly 1ll-posed task.
® Additional information can help the performance, so-called “reference”.
® [ carnable features, e.g., [3].
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[3] Xu X, Kong S, Hu T, et al. Boosting image restoration via priors from pre-trained models[C] CVPR2024



Low-light Image Enhancement

Motivation:
® [ow-light image Enhancement 1s a highly 1ll-posed task.
® Additional information can help the performance, so-called “reference”.
® FExisting methods overlook the valuable references hidden within the
training dataset itself.



Learnable Feature Patches and Vectors (LFPVs)

LFPVs:
® The training set can be divided into two subsets.
® “images that are fully fitted by the network™ D :loss approaching zero in

the supervised setting.
® “images that are not fully fitted” D,
® The network F has totally learned the mapping relationships for Dy and

only partial relationships for D,,



Learnable Feature Patches and Vectors (LFPVs)

LFPVs:
® [LFPVs mainly capture knowledge from D,, that has not be totally learned
by LLIE network.
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Learnable Feature Patches and Vectors (LFPVs)

LFPVs:
® Different feature vectors or patches in LEPVs are treated as nodes in a
graph structure with mutual connections.

® Each node is updated via a Sample Updater (SU, F;), and information
can be propagated among LFPVs via a Mutual Updater (MU, F,,).

® SU and MU are implemented with additional lightweight networks.



Learnable Feature Patches and Vectors (LFPVs)

LFPVs:
® The learning can be incorporated into existing LLIE frameworks.

® During inference, SU and MU are removed.

/ j / C ==» Learn LFPVs: R = H({l;})
e v —
Training path with I, for F,, F,,

& Reference path

....p. Training path with I,, for F

A

Feature Map {f;} from
Different Samples

/Eqs. 6 and

]

/ Encoder Feature Queried Map Fused Other Decoder\
Input Image I Part Mapfy  fa/f'a Map f'; (Eq.8) Modules Part Output Image




Learnable Feature Patches and Vectors (LFPVs)

LFPVs:
® SU will utilize the extracted features from different samples and produce the

update for LFPVs with the corresponding 1identity embedding.
® MU builds the bridge between arbitrary two nodes of LFPVs, mutually
propagating their information with LFPVs content and 1dentity embeddings.
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Learnable Feature Patches and Vectors (LFPVs)

LFPVs:
® Suppose LFPVs are C, € R™€ for vector and C, € Rk for patch

® SU will utilize the extracted features from different samples and produce the
update for LFPVs with the corresponding identity embedding, e.g., e;.

ACv,j — Sv(.fd(wz,yz) D Cv,j D ej)aj S [17”’ Acp,j — Sp(fpd (mia yi) D Cpa.j S ej)’

1
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Learnable Feature Patches and Vectors (LFPVs)

LFPVs:
® Suppose LFPVs are C, € R™€ for vector and C, € Rk for patch

® MU builds the bridge between arbitrary two nodes of LFPVs, mutually
propagating their information with LFPVs content and identity embeddings.

A C’U,j — M’U(C’U,j D C’U,h D €; D eh)a A Cp,j — Mp(cp,j D Cp,h D e; D eh)7
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Learnable Feature Patches and Vectors (LFPVs)

LFPVs:
® Overall update is the sum of SU and MU
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Use LFPVs

® (Querying with C, (Res. and S.M. denote the feature reshape and softmax
operations)

f.=Res.(f,) € R W = Res.(C,) € R,
T,=f,«W, e R">> p —SM(T,,dim = 1),
}.d _ TU " CU c R(hX’lﬂ)XC,
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Use LFPVs

® Querying with C, (Res. and S.M. denote the feature reshape and softmax
operations)

f’pd = Res.(f,) € RV xwhxe’ W, =Res.(C)) € R ¥

T, =f, * W, c R"*")X P — SM.(T,,dim = 1),

f_ld _ Tp " Cp c R(th)Xc,
(7)
where h' = h/k, w' = w/k,c = cx k x k.
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Use LFPVs

® The final results are the fusion of three features
/ 1 Py,
fa=Ftat+Tat Ta

® The final loss function

L=L(T,,I,)+ LI, 1,) = |I,—I,||+A|I,—I,]|,

4

Encourage F to learn as much Guide F; and F,, in formulating
knowledge as possible LFPVs to capture the remaining
knowledge
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® The enhancement for existing methods

SID SMID SDSD-Indoor | SDSD-Outdoor
Methods PSNR SSIM |PSNR SSIM |PSNR SSIM |[PSNR SSIM
MIRNet [34] |20.84 0.605|25.66 0.762|24.38 0.864 | 27.13 0.837
MIRNet +Ours | 21.98 0.629 | 26.48 0.774 | 26.60 0.882 | 28.28 0.859
SNR [29] 22.87 0.625|28.08 0.801|28.47 0.882|25.70 0.804
SNR+Ours 23.15 0.648 | 28.35 0.807|29.09 0.894 | 26.01 0.816
R.M. [35] 22.27 0.649(26.97 0.758|25.67 0.827|24.79 0.802
R.M.+Ours 23.60 0.664 | 28.63 0.775|27.06 0.846 | 26.77 0.814
LLFlow [25] |21.72 0.618|27.84 0.803|26.51 0.883|26.02 0.859
LLFlow +Ours | 23.16 0.639 | 28.56 0.815| 28.44 0.901 | 28.82 0.873
R.F. [1] 2444 0.680(29.15 0.815|29.77 0.896|29.49 (0.877
R.FE.+Ours 24.66 0.697|30.07 0.826 | 31.52 0.914 | 31.61 0.901
Diff-L [6] 21.45 0.571(27.57 0.783|23.93 0.836|24.19 0.832
Diff-L+Ours | 22.30 0.603|28.72 0.808 | 26.38 0.859 | 26.86 0.857
Event [12] - - - - 128.52 0.913|26.67 0.836
Event+Ours - - - - 1 28.87 0.925|27.36 0.847
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® The comparison with other types of references

| Methods | SNR [29] +SKF [27] +SMG(sem.) [30] +SMG(dep.) [30] +Pretrain [31] +ACCA [39] +Ours
PSNR 1 21.48 23.05 24.84 25.50 24.00 24.38
SSIM 1 0.849 0.853 0.880 0.892 0.872 0.864
+Params 0 2.15M 16.76M 0.67M 0.088M 0.017M
Methods URetinex [26] +SKF [27] +SMG(sem.) [30] +SMG(dep) [30] +Pretrain [31] +ACCA [39] +Qurs
PSNR 1 21.16 23.51 23.74 24.70 23.67 24.15
SSIM 1t 0.840 0.856 0.852 0.878 0.850 0.862

Table 3. Quantitative comparisons on the LOL-real dataset for various methods that learn references.

additional parameters employed during inference.

“4Params’’ denotes the number of

18



® The improvement for methods with references

| Methods | SNR+SKF  +Ours | SNR+SMG  +Ours | SNR+Pretrain +Ours | SNR+ACCA  +Ours | SNR+CodeBook [14]  +Ours | SNR+LUT [13] +Ours |

PSNR 1 23.05 24.07 24.84 25.60 25.50 25.77 24.00 2491 24.05 24.68 23.22 23.74
SSIM 1 0.853 0.865 0.880 0.891 0.892 0.906 0.872 0.886 0.860 0.871 0.858 0.874

| Methods | UR+SKF  +Ours | UR+SMG  +Ours | UR.+Pretrain  +Ours | UR+ACCA  +Ours | UR.+CodeBook [14] +Ours | UR4+LUT[I13] +Ours |
PSNR 1 23.51 24.10 23.74 24.23 24.70 25.50 23.67 24.02 23.42 24.19 22.83 23.41
SSIM 1 0.856 0.862 0.852 0.868 0.878 0.890 0.850 0.852 0.854 0.863 0.847 0.854

Table 4. Quantitative comparison on the LOL-real dataset, showing that our method can also improve the performance of existing methods
learning references. Note that we employ the strategy of learning codebook [ 14] and lookup table (LUT) [13] into different LLIE architec-
tures for a fair comparison. U.R. denotes URetinex [26].
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Experiments

® Jisual comparison

Input (SID) Restormer Restormer+Ours

Dift-L Diff-L+Ours
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® User Study: AB-test, choose “ours” or “baseline” or “the same”

Event
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® [mprovement for downstream tasks
® /[nclude nighttime image classification and semantic segmentation

Methods | EGAN[7] +Ours | LEDNet[41] +Ours | Z.D.+[I11] +Ours | RUAS[16] +Ours | SCI[19] +Ours | UR.[26] +Ours

Top-1 (%) on CODaN 1 56.68 58.02 57.40 58.61 57.96 59.08 58.36 59.14 58.68 59.54 58.72 59.87
mloU on Nighttime Driving 1 25.2 264 27.6 28.2 32.7 33.5 25.1 26.0 28.6 29.3 28.1 29.6
mloU on Dark-Zurich 1 24.9 26.0 26.6 27.8 28.3 29.1 234 24.7 20.0 26.5 24.0 24.8
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