

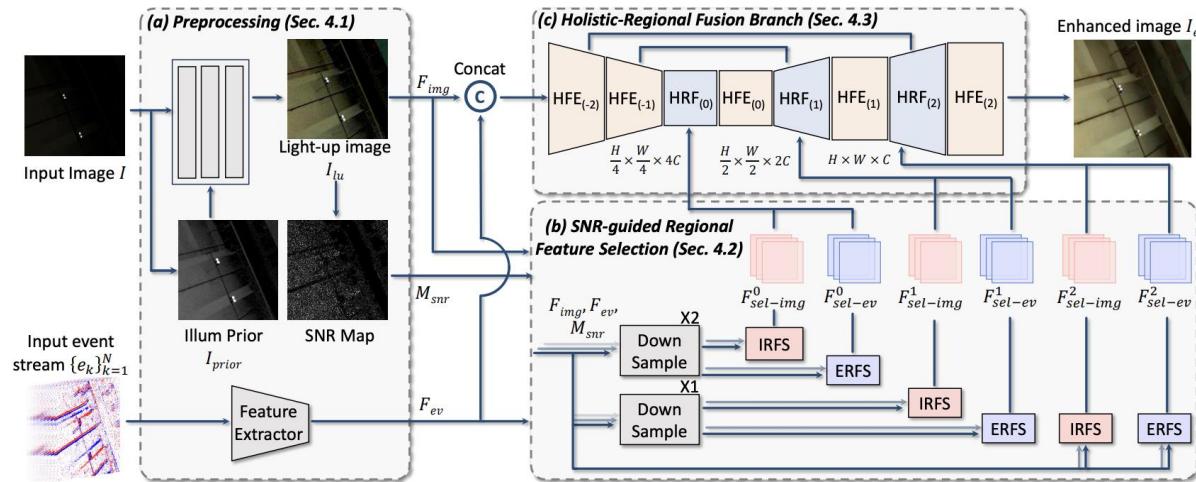
Learnable Feature Patches and Vectors for Boosting Low-light Image Enhancement without External Knowledge

Xiaogang Xu, Jiafei Wu, Qingsen Yan,
Jiequan Cui, Richang Hong, Bei Yu

Low-light Image Enhancement

Motivation:

- Low-light image Enhancement is a highly ill-posed task.
- Additional information can help the performance, so-called “reference”.
- Data collected from other devices, but it’s not very practical, e.g., [1].

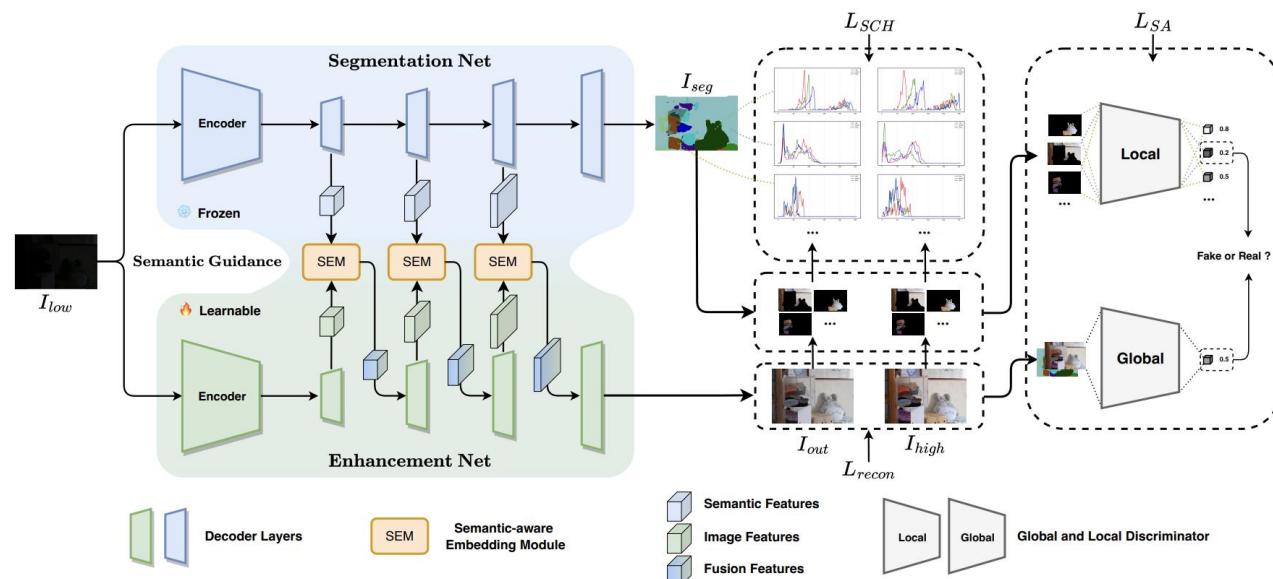


[1] Liang G, Chen K, Li H, et al. Towards robust event-guided low-light image enhancement: a large-scale real-world event-image dataset and novel approach[C] CVPR2024

Low-light Image Enhancement

Motivation:

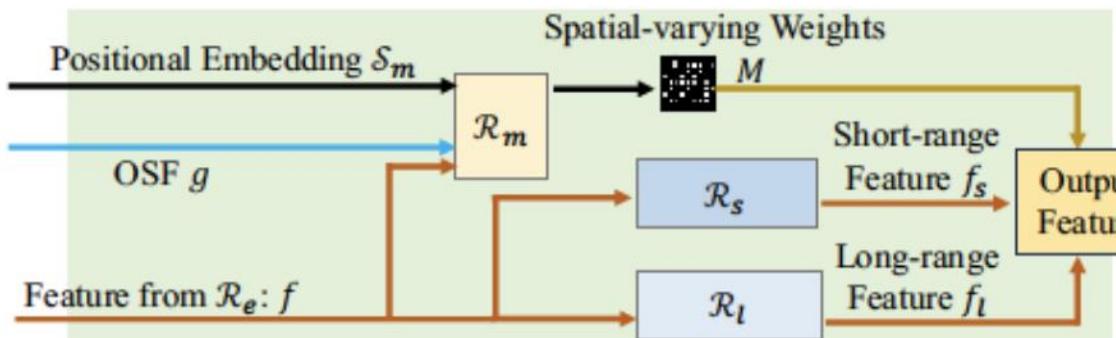
- Low-light image Enhancement is a highly ill-posed task.
- Additional information can help the performance, so-called “reference”.
- Pre-trained models, e.g., [2].



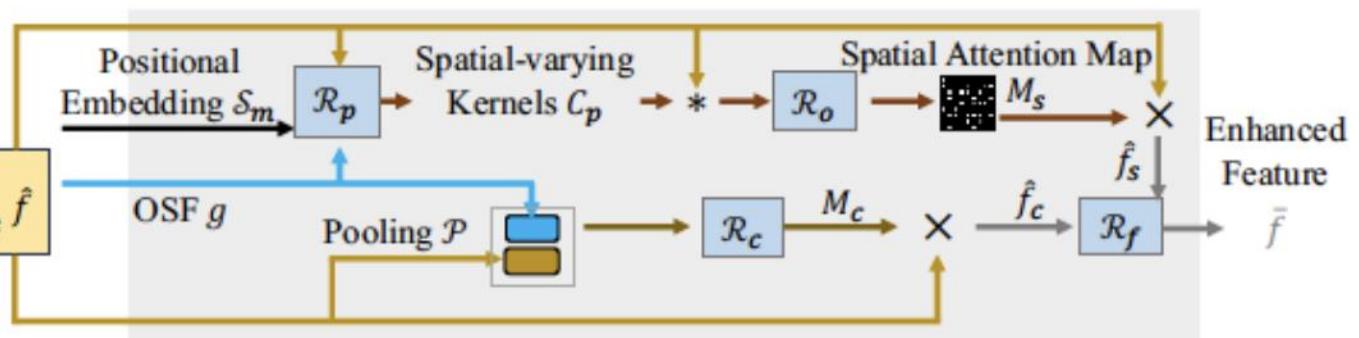
Low-light Image Enhancement

Motivation:

- Low-light image Enhancement is a highly ill-posed task.
- Additional information can help the performance, so-called “reference”.
- Learnable features, e.g., [3].



(a) Pre-Train-Guided Spatial-Varying Enhancement \mathcal{A}



(b) Pre-Train-Guided Channel-Spatial Attention \mathcal{C}

Low-light Image Enhancement

Motivation:

- Low-light image Enhancement is a highly ill-posed task.
- Additional information can help the performance, so-called “reference”.
- *Existing methods overlook the valuable references hidden within the training dataset itself.*

Learnable Feature Patches and Vectors (LFPVs)

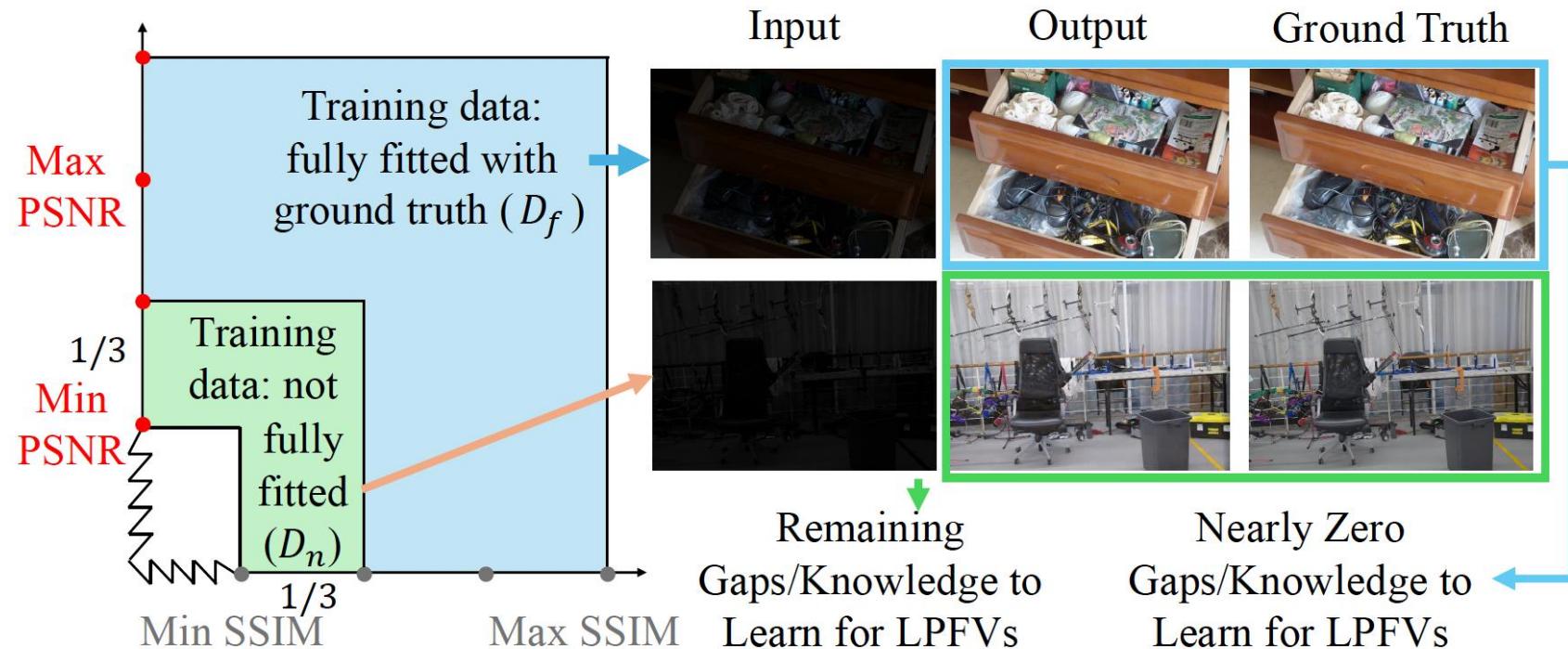
LFPVs:

- The training set can be divided into two subsets.
- “images that are fully fitted by the network” D_f : loss approaching zero in the supervised setting.
- “images that are not fully fitted” D_n
- The network F has totally learned the mapping relationships for D_f and only partial relationships for D_n

Learnable Feature Patches and Vectors (LFPVs)

LFPVs:

- LFPVs mainly capture knowledge from D_n that has not be totally learned by LLIE network.



Learnable Feature Patches and Vectors (LFPVs)

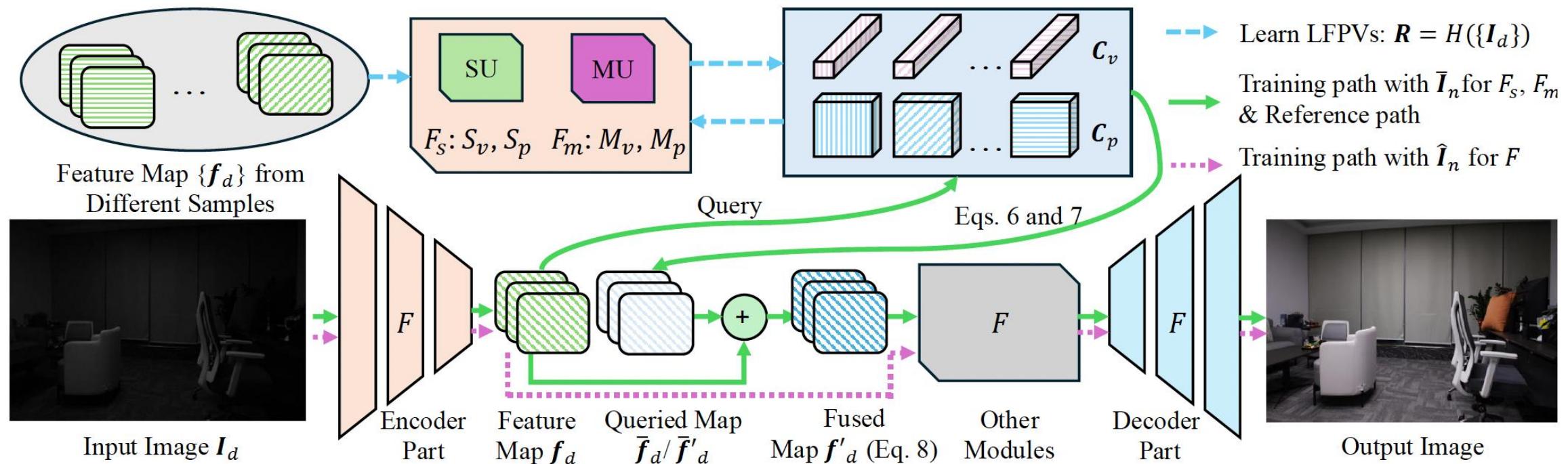
LFPVs:

- Different feature vectors or patches in LFPVs are treated as nodes in a graph structure with mutual connections.
- Each node is updated via a Sample Updater (SU, F_s), and information can be propagated among LFPVs via a Mutual Updater (MU, F_m).
- SU and MU are implemented with additional lightweight networks.

Learnable Feature Patches and Vectors (LFPVs)

LFPVs:

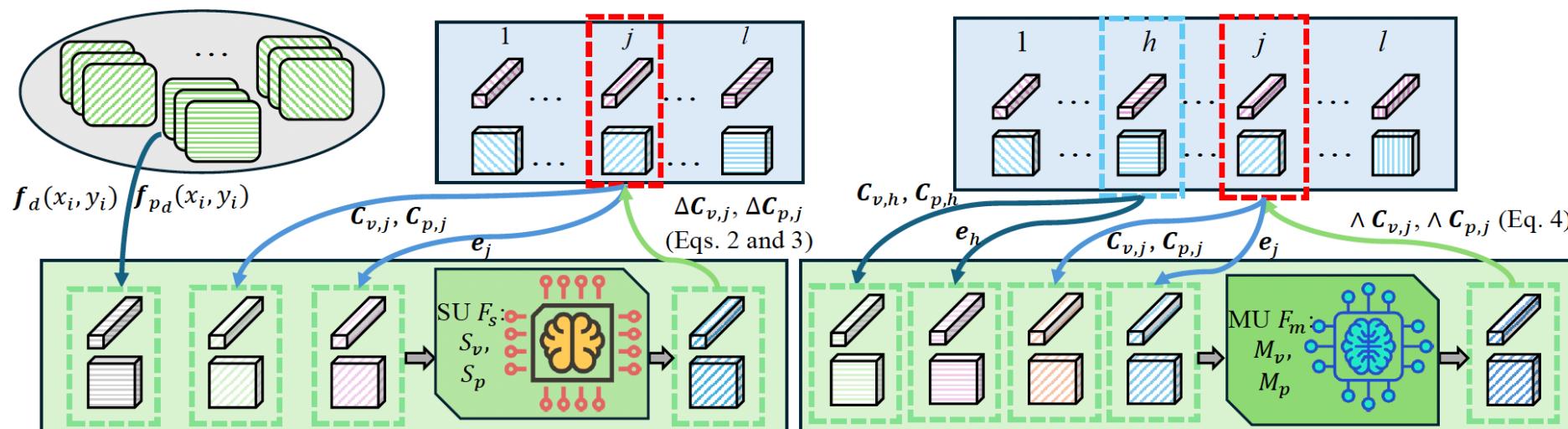
- The learning can be incorporated into existing LLIE frameworks.
- During inference, SU and MU are removed.



Learnable Feature Patches and Vectors (LFPVs)

LFPVs:

- SU will utilize the extracted features from different samples and produce the update for LFPVs with the corresponding identity embedding.
- MU builds the bridge between arbitrary two nodes of LFPVs, mutually propagating their information with LFPVs content and identity embeddings.

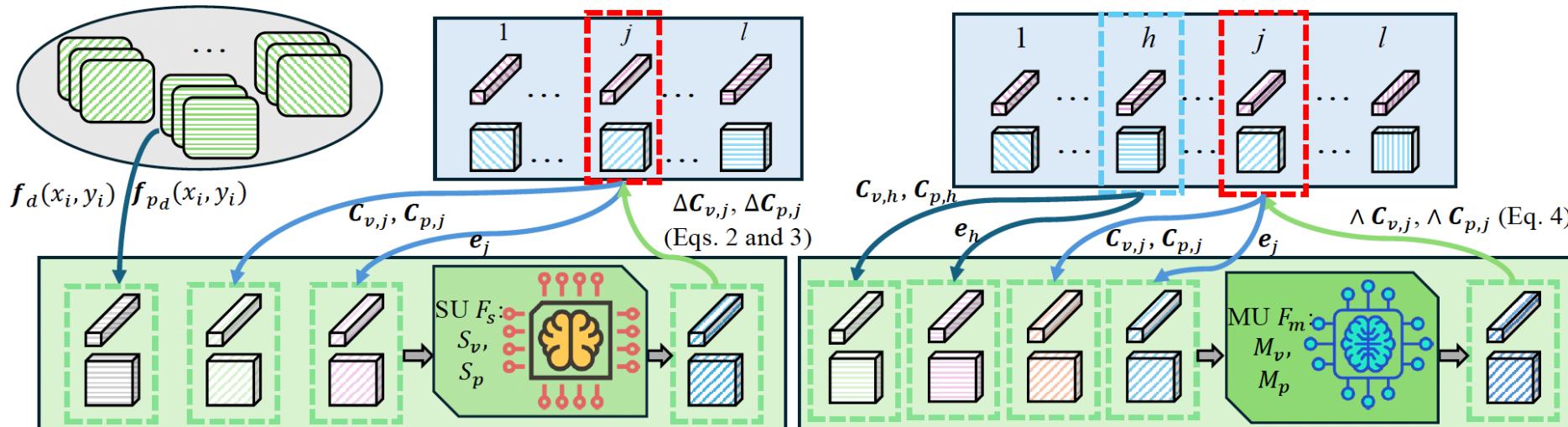


Learnable Feature Patches and Vectors (LFPVs)

LFPVs:

- Suppose LFPVs are $\mathbf{C}_v \in \mathbb{R}^{l \times c}$ for vector and $\mathbf{C}_p \in \mathbb{R}^{l \times (c \times k \times k)}$ for patch
- SU will utilize the extracted features from different samples and produce the update for LFPVs with the corresponding identity embedding, e.g., e_j .

$$\Delta \mathbf{C}_{v,j} = S_v(\mathbf{f}_d(x_i, y_i) \oplus \mathbf{C}_{v,j} \oplus \mathbf{e}_j), j \in [1, l], \quad \Delta \mathbf{C}_{p,j} = S_p(\mathbf{f}_{p_d}(x_i, y_i) \oplus \mathbf{C}_{p,j} \oplus \mathbf{e}_j),$$

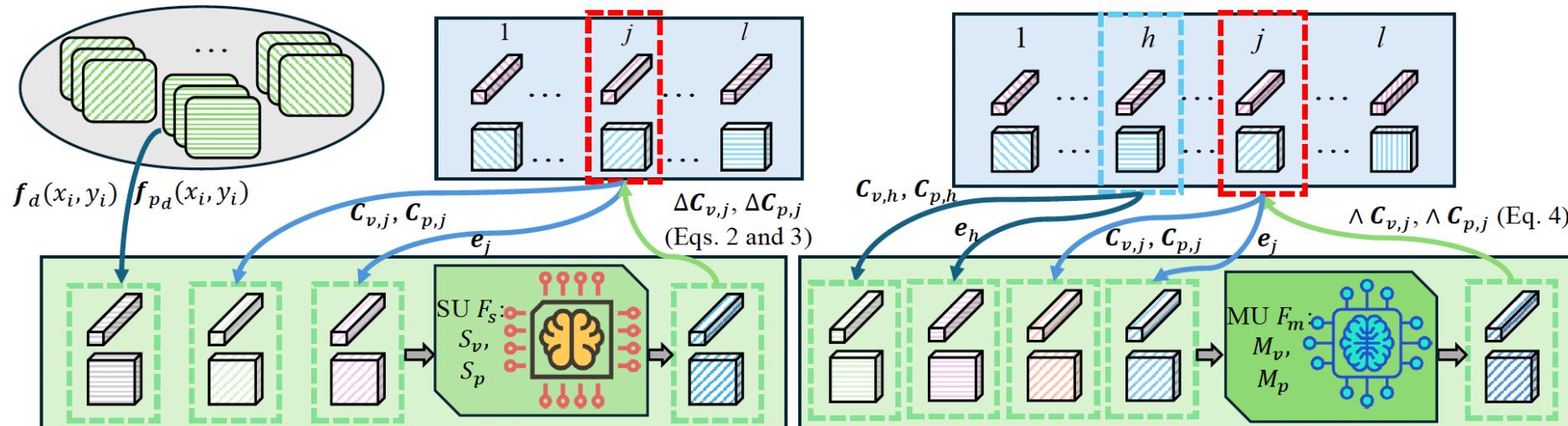


Learnable Feature Patches and Vectors (LFPVs)

LFPVs:

- Suppose LFPVs are $\mathbf{C}_v \in \mathbb{R}^{l \times c}$ for vector and $\mathbf{C}_p \in \mathbb{R}^{l \times (c \times k \times k)}$ for patch
- MU builds the bridge between arbitrary two nodes of LFPVs, mutually propagating their information with LFPVs content and identity embeddings.

$$\wedge \mathbf{C}_{v,j} = M_v(\mathbf{C}_{v,j} \oplus \mathbf{C}_{v,h} \oplus \mathbf{e}_j \oplus \mathbf{e}_h), \quad \wedge \mathbf{C}_{p,j} = M_p(\mathbf{C}_{p,j} \oplus \mathbf{C}_{p,h} \oplus \mathbf{e}_j \oplus \mathbf{e}_h),$$



Learnable Feature Patches and Vectors (LFPVs)

LFPVs:

- *Overall update is the sum of SU and MU*

$$\mathbf{C}_{v/p,j}^{o+1} = \mathbf{C}_{v/p,j}^o + \Delta_j^o + \wedge_j^o,$$

$$\Delta_j^o = \sum_{\mathbf{f}_d / \mathbf{f}_{p_d}, x_i, y_i} (\Delta \mathbf{C}_{v/p,j}),$$

$$\wedge_j^o = \sum_h (\wedge \mathbf{C}_{v/p,j}),$$

Use LFPVs

- *Querying with C_v* (Res. and S.M. denote the feature reshape and softmax operations)

$$\hat{\mathbf{f}}_d = \text{Res.}(\mathbf{f}_d) \in \mathbb{R}^{(h \times w) \times c}, \mathbf{W}_v = \text{Res.}(\mathbf{C}_v) \in \mathbb{R}^{c \times l},$$

$$\mathbf{T}_v = \hat{\mathbf{f}}_d * \mathbf{W}_v \in \mathbb{R}^{(h \times w) \times l}, \hat{\mathbf{T}}_v = \text{S.M.}(\mathbf{T}_v, \text{dim} = 1),$$

$$\bar{\mathbf{f}}_d = \hat{\mathbf{T}}_v * \mathbf{C}_v \in \mathbb{R}^{(h \times w) \times c},$$

Use LFPVs

- *Querying with C_p* (Res. and S.M. denote the feature reshape and softmax operations)

$$\begin{aligned}\hat{\mathbf{f}}'_{p_d} &= \text{Res.}(\mathbf{f}_d) \in \mathbb{R}^{(h' \times w') \times c'}, \mathbf{W}_p = \text{Res.}(\mathbf{C}_p) \in \mathbb{R}^{c' \times l}, \\ \mathbf{T}_p &= \hat{\mathbf{f}}'_{p_d} * \mathbf{W}_p \in \mathbb{R}^{(h' \times w') \times l}, \hat{\mathbf{T}}_p = \text{S.M.}(\mathbf{T}_p, \dim = 1), \\ \bar{\mathbf{f}}'_d &= \hat{\mathbf{T}}_p * \mathbf{C}_p \in \mathbb{R}^{(h \times w) \times c},\end{aligned}\tag{7}$$

where $h' = h/k$, $w' = w/k$, $c' = c \times k \times k$.

Use LFPVs

- *The final results are the fusion of three features*

$$\mathbf{f}'_d = \bar{\mathbf{f}}_d + \bar{\mathbf{f}}'_d + \mathbf{f}_d,$$

- *The final loss function*

$$\mathcal{L} = \mathcal{L}(\hat{\mathbf{I}}_n, \mathbf{I}_n) + \lambda \mathcal{L}(\bar{\mathbf{I}}_n, \mathbf{I}_n) = \|\hat{\mathbf{I}}_n - \mathbf{I}_n\| + \lambda \|\bar{\mathbf{I}}_n - \mathbf{I}_n\|,$$

Encourage F to learn as much knowledge as possible

Guide F_s and F_m in formulating LFPVs to capture the remaining knowledge

Experiments

- *The enhancement for existing methods*

Methods	SID		SMID		SDSD-Indoor		SDSD-Outdoor	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
MIRNet [34]	20.84	0.605	25.66	0.762	24.38	0.864	27.13	0.837
MIRNet +Ours	21.98	0.629	26.48	0.774	26.60	0.882	28.28	0.859
SNR [29]	22.87	0.625	28.08	0.801	28.47	0.882	25.70	0.804
SNR+Ours	23.15	0.648	28.35	0.807	29.09	0.894	26.01	0.816
R.M. [35]	22.27	0.649	26.97	0.758	25.67	0.827	24.79	0.802
R.M.+Ours	23.60	0.664	28.63	0.775	27.06	0.846	26.77	0.814
LLFlow [25]	21.72	0.618	27.84	0.803	26.51	0.883	26.02	0.859
LLFlow +Ours	23.16	0.639	28.56	0.815	28.44	0.901	28.82	0.873
R.F. [1]	24.44	0.680	29.15	0.815	29.77	0.896	29.49	0.877
R.F.+Ours	24.66	0.697	30.07	0.826	31.52	0.914	31.61	0.901
Diff-L [6]	21.45	0.571	27.57	0.783	23.93	0.836	24.19	0.832
Diff-L+Ours	22.30	0.603	28.72	0.808	26.38	0.859	26.86	0.857
Event [12]	-	-	-	-	28.52	0.913	26.67	0.836
Event+Ours	-	-	-	-	28.87	0.925	27.36	0.847

Experiments

- *The comparison with other types of references*

Methods	SNR [29]	+SKF [27]	+SMG(sem.) [30]	+SMG(dep.) [30]	+Pretrain [31]	+ACCA [39]	+Ours
PSNR ↑	21.48	23.05	24.84	24.12	25.50	24.00	24.38
SSIM ↑	0.849	0.853	0.880	0.851	0.892	0.872	0.864
+Params	0	2.15M	16.76M	16.76M	0.67M	0.088M	0.017M
Methods	URetinex [26]	+SKF [27]	+SMG(sem.) [30]	+SMG(dep) [30]	+Pretrain [31]	+ACCA [39]	+Ours
PSNR ↑	21.16	23.51	23.74	23.25	24.70	23.67	24.15
SSIM ↑	0.840	0.856	0.852	0.849	0.878	0.850	0.862

Table 3. Quantitative comparisons on the LOL-real dataset for various methods that learn references. “+Params” denotes the number of additional parameters employed during inference.

Experiments

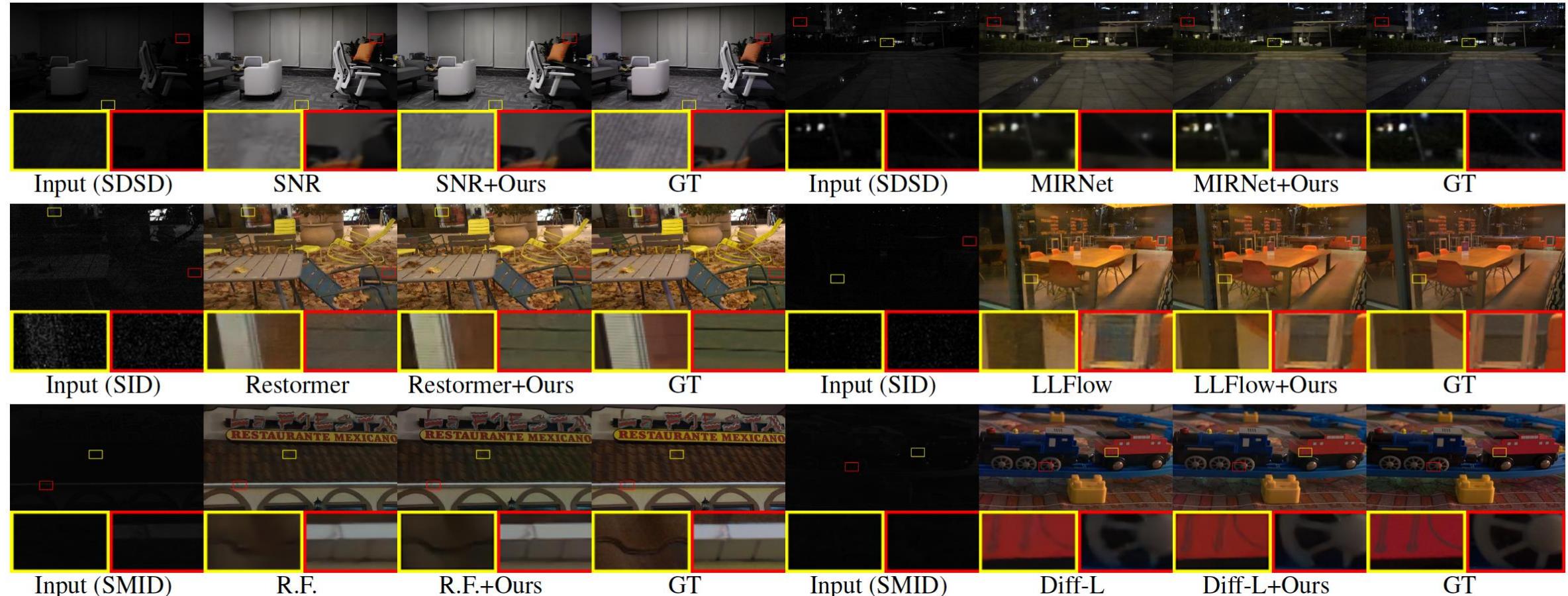
- *The improvement for methods with references*

Methods	SNR+SKF	+Ours	SNR+SMG	+Ours	SNR+Pretrain	+Ours	SNR+ACCA	+Ours	SNR+CodeBook [14]	+Ours	SNR+LUT [13]	+Ours
PSNR ↑	23.05	24.07	24.84	25.60	25.50	25.77	24.00	24.91	24.05	24.68	23.22	23.74
SSIM ↑	0.853	0.865	0.880	0.891	0.892	0.906	0.872	0.886	0.860	0.871	0.858	0.874
Methods	UR.+SKF	+Ours	UR.+SMG	+Ours	UR.+Pretrain	+Ours	UR.+ACCA	+Ours	UR.+CodeBook [14]	+Ours	UR.+LUT [13]	+Ours
PSNR ↑	23.51	24.10	23.74	24.23	24.70	25.50	23.67	24.02	23.42	24.19	22.83	23.41
SSIM ↑	0.856	0.862	0.852	0.868	0.878	0.890	0.850	0.852	0.854	0.863	0.847	0.854

Table 4. Quantitative comparison on the LOL-real dataset, showing that our method can also improve the performance of existing methods learning references. Note that we employ the strategy of learning codebook [14] and lookup table (LUT) [13] into different LLIE architectures for a fair comparison. U.R. denotes URetinex [26].

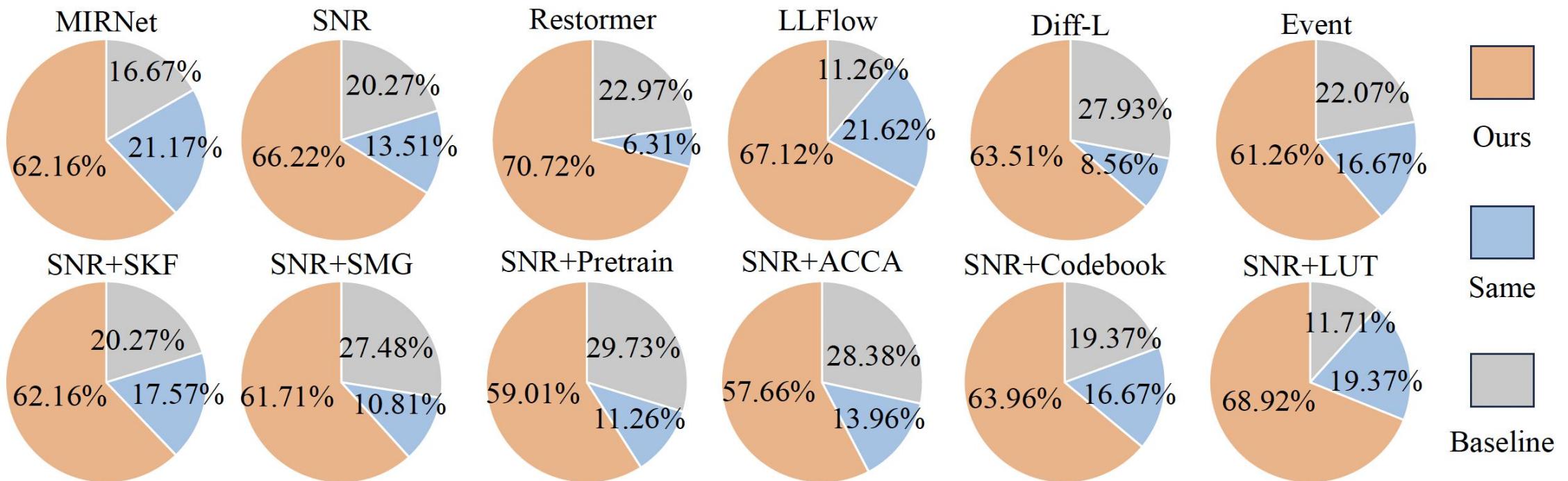
Experiments

● *Visual comparison*



Experiments

- *User Study: AB-test, choose “ours” or “baseline” or “the same”*



Experiments

- *Improvement for downstream tasks*
- *Include nighttime image classification and semantic segmentation*

Methods	E.GAN [7]	+Ours	LEDNet [41]	+Ours	Z.D.+ [11]	+Ours	RUAS [16]	+Ours	SCI [19]	+Ours	UR. [26]	+Ours
Top-1 (%) on CODaN ↑	56.68	58.02	57.40	58.61	57.96	59.08	58.36	59.14	58.68	59.54	58.72	59.87
mIoU on Nighttime Driving ↑	25.2	26.4	27.6	28.2	32.7	33.5	25.1	26.0	28.6	29.3	28.1	29.6
mIoU on Dark-Zurich ↑	24.9	26.0	26.6	27.8	28.3	29.1	23.4	24.7	25.7	26.5	24.0	24.8

Thanks