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DeSPITE: Exploring Contrastive Deep Skeleton-Pointcloud-IMU-Text
Embeddings for Advanced Point Cloud Human Activity Understanding

Thomas Kreutz, Max Muhlhauser, Alejandro Sanchez Guinea
TU Darmstadt, Telecooperation Lab
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ne problem: In the real world
DAR and IMU are independent of each other
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Three individuals in the LIiDAR scene
E.g., Object Detection or
Instance Segmentation + Tracking

[ LiDAR J j‘> [ Perception ] j1> \i
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@ IMU of one individual




Our Goal:

Learn how LIDAR data corresponds to IMU data

Who is this?

When did this happen?
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Research Question

Can we use multi-modal representation learning to learn
the correspondence between LiDAR and IMU data?

Raising both arms Pick up object
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Joint LIDAR+IMU embedding space L
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Related Work: Multi-Modal Representation Learning

= Multi-modal representation learning is great for correspondence problems

IMU+RGB for RE-ID? IMU+RGB Text+Skeleton pose

“ u for search with text query?
ﬂ “Walking” T i%i @

A !
IMU+LiDAR?

?

Unexplored

1 Masullo et al., 2019, Who Goes There? Exploiting Silhouettes and Wearable Signals for Subject Identification in Multi-Person Environments
2 Moon et al., 2022, IMU2CLIP: Multimodal Contrastive Learning for IMU Motion Sensors from Egocentric Videos and Text
3 Petrovich et al., 2023, TMR: Text-to-Motion Retrieval Using Contrastive 3D Human Motion Synthesis




Related Work: Multi-Modal Representation Learning

= Multi-modal representation learning is great for correspondence problems

= Joint embedding spaces benefit from more modalities (even if only partial
alignments between modalities)

. No LiDAR * RE-ID and search not
explored

BabelTower?
. 1 —
ImageBind B

1 Girdhar et al., 2023, ImageBind: One Embedding Space To Bind Them All
2 Dai et al., 2024, Babel: A Scalable Pre-trained Model for MultiModal Sensing via Expandable Modality Alignment
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Contributions

Dataset: LIPD'+Babel?

« ~500.000 synchronized Point Cloud, IMU, Skeleton with partial text descriptions
DeSPITE = Deep Skeleton Pointcloud IMU Text Embeddings

« Joint embedding space through multi-modal contrastive learning

~ -
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N LIPD + Babel 2=
- S
IMU LIDAR Point Cloud Skeleton Text
== S5 L AaS
—e == —i 3 ?‘ ‘P 55_ ~— — Performi.ng
ol N €2 F& g% 5% <human activity>.
DeSPITE
L
1Ren et al., 2022, LiDAR-aid Inertial Poser: Large-scale Human Motion Capture by Sparse Inertial and LiDAR Sensors

2 Punnakkal et al., 2021, BABEL: Bodies, Action and Behavior with English Labels




Learning Joint Embedding Space 16
“T-Pose” “Standing Still” 1. Bind to CLIP Text Embedding Space

PCCLIP Text '
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Learning Joint Embedding Space 17

“T-Pose”  <empty> “Standing Still” 1. Bind to CLIP Text Embedding Space

<< CLIP Text
Encoder ; =T exp(sim(zy, 2;)/T)

a—b B . PR
ﬂ E E I ijl exp(sim(2f, z3)/7)

Sum over all modality pairs!
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Learning Joint Embedding Space 18

“T-Pose”  <empty> “Standing Still” 1. Bind to CLIP Text Embedding Space
<< CLIP Text -
Encoder ; = _log exp(sim(zy, 2;)/T)

a—b B g o
ﬂ E E I Zj:l exp(sim(2f, z3)/7)

Sum over all modality pairs!
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- mask if no text pairing exists
tm (i.e., <empty)




Learning Joint Embedding Space
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2. Pairwise non-text modality alignment

exp(sim(zy, 23)/7)

B ; P
21:1 exp(sim(z{, 23)/7)

: = — log

Sum over all modality pairs!
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2. Pairwise non-text modality alignment

\

exp(sim(2%, 2})/7)

B ; P
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Learning Joint Embedding Space 2

2. Pairwise non-text modality alignment

exp(sim(z%, 2})/7)

7 -
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Evaluation

Evaluate on merged LIPD+Babel:
= 24 frame long windows

= Train: ~500.000 synchronized LIDAR, IMU, skeleton poses, ~37% with text
descriptions

Evaluate with 3 Tasks
(a) Matching (RE-ID) (b) Temporal Moment Retrieval  (c) HAR Finetuning
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Ablations over all modality combinations in joint embeding space

= E.g., DeSPITE = all 4 = (Skeleton, Point Cloud, IMU, Text)

= E.g., DeSPIE = only 3 = (Skeleton, Point Cloud, IMU)

« E.g., DePIE = only 2 = (Point Cloud, IMU) ‘
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Evaluation: Matching/RE-ID

(only showing LIPD,
IMU->PC,
all results in paper)

Accuracy

3 Test

LIPD
IMU -> PC

Datasets (LIPD, TC,DIP)
*N=2,4, 8, ... 32 Subjects

« 1000 random sampled scenes
* Metric: Matching Accuracy
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Main Findings

=
o
1

(1) Strong matching accuracy!

g ‘DeSPIE

0.9 -
(2) Joint embeddings trained with
0.8 - '\!\text perform worse!
I ) I I I I I 1 I .DesplTE \
2 4 8 12 16 20 24 28 32 ~15)

n_subjects
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Evaluation: Matching/RE-ID

« 3 Test Datasets (LIPD, TC,DIP)
*N=2,4, 8, ... 32 Subjects
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1000 random sampled scenes ok
* Metric: Matching Accuracy
TC [ ] ) )
IMU -> PC Main Findings
1.0 4
. — e+ (1) Strong matching accuracy!
otyshoun TG, 0.8 - §— DesPEE
aIIresuIts’in paper) §
< 0.6 (2) Joint embeddings trained with

Nxt perform worse!
*DeSPITE
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Evaluation: Matching/RE-ID

« 3 Test Datasets (LIPD, TC,DIP)
*N=2,4, 8, ... 32 Subjects
« 1000 random sampled scenes
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« Metric: Matching Accuracy
DIP o
IMU -> PC Main Findings
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(only showing DIP,
IMU->PC,

.N\N (1) Strong matching accuracy!
¢ DeSPIE

Accuracy

all results in paper) 0.6 -
04- (2) Joint embeddings trained with
' text perform worse!
— T *DeSPITE |
2 4 8 12 16 20 24 28 32 ~15)

n_subjects
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Evaluation: Matching/RE-ID

Candidates in Multi-Person Scene
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Evaluation: Temporal Moment Retrieval

« 3 Test Datasets (LIPD, TC, DIP)
« Find a subsequence in full sequence U -8-Y-¥
» Metric: Recall@Top1, 10, 20, 50 —r L7

- Correct if within 1 second

LIPD Main Findings
5 My > Pt (1) Strong moment retrieval!
S s T DeSPIE
(only showing IMU->PC, ®©
Plcombnatons e € 0.6 (2) Joint embeddings trained with
o« text perform worse!
04 -DeSPITE
1 10 20 50 -

topk
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Evaluation: Temporal Moment Retrieval

« 3 Test Datasets (LIPD, TC, DIP)
« Find a subsequence in full sequence U -8-Y-¥
» Metric: Recall@Top1, 10, 20, 50 T ',

- Correct if within 1 second

DIP Main Findings
IMU -> PC

(1) Strong moment retrieval!
& DeSPIE

K

o
0.6 -
12
(only showing IMU->PC, @)

all combinations in paper) g 0.4 1
U

v (2) Joint embeddings trained with
© 0.2 '\text perform worse!
DeSPITE
1 10 20 50 ~J%)

topk
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Evaluation: Temporal Moment Retrieval

« 3 Test Datasets (LIPD, TC, DIP)
« Find a subsequence in full sequence I B o ¢
» Metric: Recall@Top1, 10, 20, 50 —r L7

- Correct if within 1 second

TC Main Findings
IMU -> PC
5 1.0 - , (1) Strong moment retrieval!
) 0.8 - l DeSPIE
|_ .
(only showing IMU->PC, @)

all combinations in paper) % -
S 0.6

(2) Joint embeddings trained with
0.4 - text perform worse!
DeSPITE

Re

topk
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Evaluation: Temporal Moment Retrieval

IMU Represents: ? Most similar moments in point cloud video

Retrieved Moment: Paint Cloud 4

= QUERY IMU 1 »=* Retrieved Moment: Paint Cloud 2 Retrieved Moment: Paint Cloud 3
1D
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Compute similarity to each frame in point cloud video _ _ _ _ _ _
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-valuation:

Datasets:

(1) HMPEAR!?

(2) MSR-Action3D?
Metric: Accuracy

6
ke i

Point Cloud HAR finetuning

HMPEAR:

32

MSR-Action3D:

Method Modality ‘ Acc(Seg)T
Uni-Modal Supervised Learning Only

PSTNet [11] PC 64.3

P4-Transformer [10] PC 63.9

PST-Transformer' [13] PC

65.94 I

Multi-Modal Supervised Learning Only

Methods Video Acc@1 (1)
Supervised Learning Only
PST-Transformer' [13]
MAMBAA4D [31] 93.38
PvNext [58] 94.77
KAN-HyperpointNet [7] I 95.59 I

Uni-Modal Pre-Training + Transfer Learning

AR-Proj [29] RGB+PC 60.6
PEAR-Proj (BestPE) [29] RGB+PC 64.1
PEAR-Proj (BestAR) [29] RGB+PC 66.0

Multi-Modal Pre-Training + Transfer Learning

PSTNet + PointCPSC [52] 92.68 (+1.48)
PSTNet + PointCMP [51] 93.27 (+2.07)
PST-Transformer + MaST-Pre [50)] 94.08 (40.35)
)
)

PPTr + C2P [63] 94.76 (+2.43
P4Transformer + M2PSC [ 18] 93.03 (+2.09
PST-Transformer + M2PSC [ 18]

PC 69.18 (+3.24)
PC 70.26 (+4.32)
PC 70.65 (+4.71)

Multi-Modal Pre-Training + Transfer Learnin

Main Findings:

95.12 (+1.39 | +2.797
95.47 (+1.74 | + 3.14%
95.47 (+1.74 | + 3.14%

« Multi-Modal Pre-Training better than Uni-Modal Pre-Training
« Embeddings trained with text or all modalities benefits HAR (DeSPIE, DePITE, DeSPITE

always best)

1Lin et al., 2024, Hmpear: A dataset for human pose estimation and action recognition
2 Li et al., 2010, Action recognition based on a bag of 3d points
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DeSPITE: Exploring Contrastive Deep Skeleton-Pointcloud-IMU-Text
Embeddings for Advanced Point Cloud Human Activity Understanding

Thank you for listening.
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