. Motivation

Limitations of existing Learned Image Compression (LIC) methods:

X Existing methods rely on global attention or dense autoregression
to capture long-range dependencies, leading to /nefficient and high-
complexity context modeling.

X Their ability to comprehensively exploit diverse contextual
Information across coding steps remains limited.

. We address these challenges by introducing Hierarchical
Progressive Context Model (HPCM) that efficiently captures long-
range dependencies and progressively fuses multi-scale contextual
information.

ll. Hierarchical Coding Schedule
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Our Hierarchical Coding Schedule divides latent representations into
multiple scales, sequentially encoding long-range to short-range
dependencies. This approach efficiently models both global and local
contexts, balancing performance and complexity.
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lll. Progressive Context Fusion

Progressive context fusion for coding 9;* Cross-scale context fusion
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Intra-Scale Context Refine Cross-Scale Course-to Fine Fusion

Progressive Context Fusion progressively integrates context
from previous coding steps into the current step using a cross-
attention mechanism. This enables the accumulation of diverse
contextual information, enhancing entropy modeling accuracy
while maintaining efficiency across multiple scales.

V. Experiments

Rate-Distortion and Coding Complexity Results
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HCPM-Base (ours): 0.5938 / 33.18

Ablation Study

"~ Original: bpp / PSNR HCPM-Large (ours): 0.5489 / 32.97

Table 2. Abaltion studies on hierarchical coding schedule.

ELIC: 0.6455 / 32.76
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Model settings kMACs/pixel BD-Rate
HPCM-Base* 918.57 0.00%
w/o hierarchical extraction 1107.48 1.07% (b)
coding step (2, 3, 3) 663.90 2.39% Model settings kMACs/pixel BD-Rate
coding step (2, 3, 12) 142791 -2.55% HPCM-Base 918.57 0.00%
coding step (4, 3, 6) 925.59 0.35% w/o progressive fusion 872.80 4.71%
use 1; as progressive context 872.80 1.17%

Model Enc. Time' Dec. Time' kMACs Params PSNR BD-Rate

(ms) (ms) /pixel (M) Kodak CLIC Pro Valid Tecnick
ELIC (CVPR’22) [15] 126.5 111.4 573.88 36.93 -3.22% -3.89% -4.57%
STF (CVPR’22) [51] 142.5 156.8 511.17 99.86 -2.06% 1.12% -2.17%
TCM (CVPR’23) [34] 200.2 201.8 1823.58 76.57 -10.70% -8.32% -11.84%
MLIC++ (NCW ICML’23) [ 18] 1934 226.4 1282.81 116.72 -15.15% -14.05% -17.90%
FLIC (ICLR’24) [23] >1000 >1000 1096.04 70.96 -13.20% -0.88% -15.27%
MambaVC (Arxiv’24) [41] 235.6 246.2 813.80 47.88 -8.72% - -
WeConvene (ECCV’24) [12] 343.6 256.5 2343.13 107.15 -6.98% -5.66% -8.63%
CHARM* 57.5 70.6 495.75 58.53 0.86% 1.55% -1.32%
DCVC-DC intra* 57.8 58.2 542.14 4551 -9.18% -8.54% -10.18%
HPCM-Base (ours) 81.8 81.3 918.57 68.50 -15.31% -14.23% -18.16%
HPCM-Large (ours) 91.2 90.2 1261.29 89.71 -19.19% -18.37 % -22.20%

*The transforms are the same as our HPCM-Base model, and the entropy models are different.
T Coding time includes network inference time and arithmetic coding time. Details are presented in Sec. F of the supplementary material.

* Our default setting is coding step (2, 3, 6).
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(a) Model Parameters (Billion)
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(b) Training Compute (PFLOPSs)

LALIC (CVPR’25) [16] 189.0 954 667.26 66.13 -14.09% -14.22% -18.31%
DCAE (CVPR’235) [47] 134.6 132.4 94040 1194 -15.36% -15.40% -20.35%
HPCM-Base (ICCV’25) [37] 81.8 81.3 918.57 68.5 -153.31% -14.23% -18.16%
HPCM-Large (ICCV’25) [37] 01.2 90.2 1261.29 8§9.71 -19.19% -18.37% -22.20%
HPCM-1B 350.9 342.5 9625.24 1002.00 -24.21% -23.41% -25.68 %
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