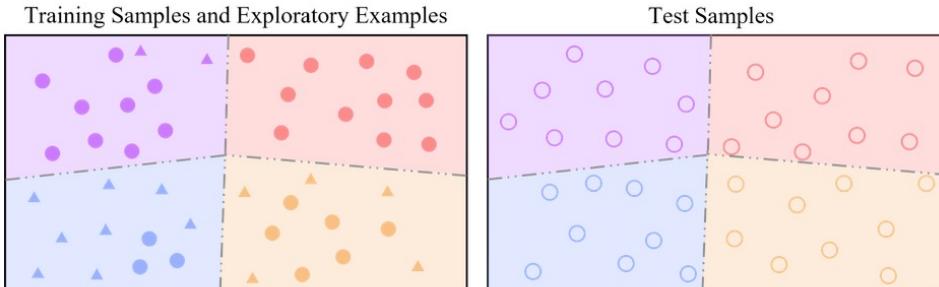



# Supervised Exploratory Learning for Long-Tailed Visual Recognition


*Zhongquan Jian<sup>+</sup>, Yanhao Chen<sup>+</sup>, Yancheng Wang,  
Junfeng Yao<sup>\*</sup>, Meihong Wang<sup>\*</sup>, Qingqiang Wu<sup>\*</sup>*

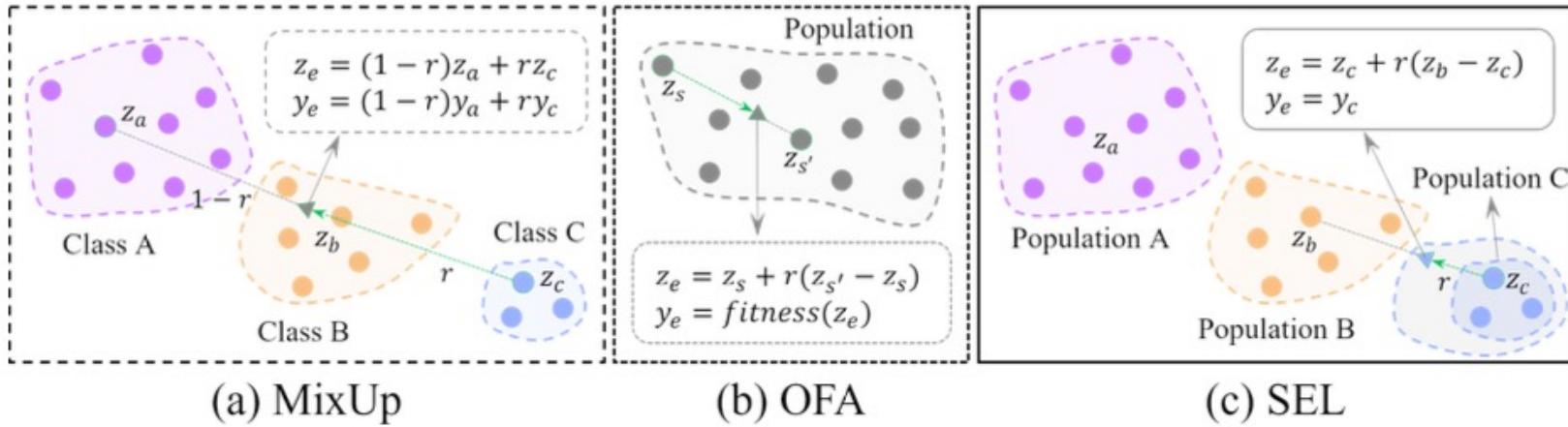
2025-10-19

# Motivation



(a) Existing methods.

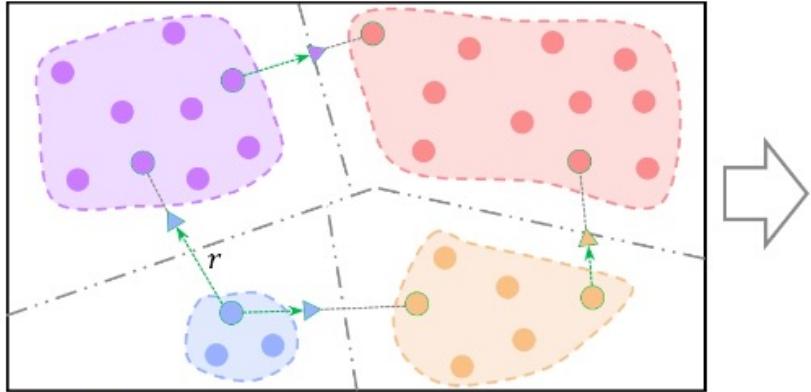



(b) Existing methods trained with SEL.

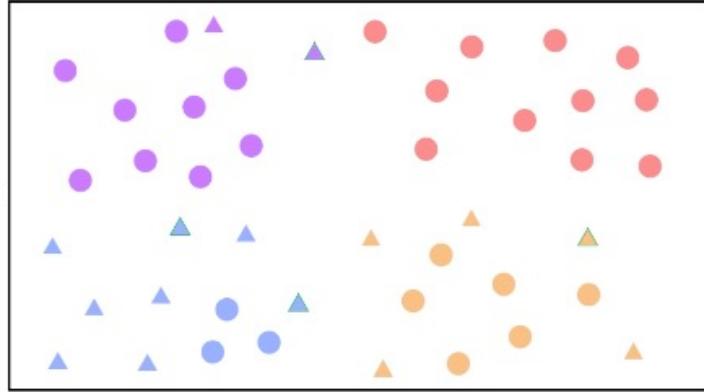
● Training sample    ▲ Exploratory example    - - - Class boundary    ○ Test sample

This discrepancy erodes the well-defined margins of the classifier [25], leading to the misclassification of samples from tail classes as head classes, as shown in Fig. 1(a).

SEL leverages an adaptive OFA operator to synthesize exploratory examples, compensating for insufficient tail-class data and enabling balanced decision regions and boundaries, as shown in Fig. 1(b).


# Method




The differences and relationships among MixUp, OFA, and SEL. MixUp linearly interpolates two random samples (typically from different classes, such as  $z_a$  and  $z_c$ ) to create a new sample, while OFA leverages the better individual ( $z_{s'}$ ) to guide weaker individuals ( $z_s$ ) toward better evolution. Combining their strengths, SEL gradually expands and reinforces minority decision regions by synthesizing adjacent exploratory examples.

# Method

## Adaptive OFA Operator



## Exploratory Examples



● ● ● ● Training samples with different classes.

▼ ▲ ▲ ▲ Exploratory examples with different classes.

$$z_e = z_s + r(z_{s'} - z_s)$$

$$\mathcal{L}_{SEL} = -\frac{1}{C} \sum_{c=1}^C \left( \frac{1}{k_c} \sum_{i=1}^{k_c} \log(\hat{y}_i^c) \right)$$



# Rational



$$\hat{y}^c = \frac{e^{w_c^T z}}{\sum_{c'=1}^C e^{w_{c'}^T z}}$$

| Case | $z_s$ | $z_{s'}$ | $z_e$                | Goal                        |
|------|-------|----------|----------------------|-----------------------------|
| 1    | $z_t$ | $z_h$    | $z_t + r(z_h - z_t)$ | $\hat{y}_e^t > \hat{y}_e^h$ |
| 2    | $z_h$ | $z_t$    | $z_h + r(z_t - z_h)$ | $\hat{y}_e^h > \hat{y}_e^t$ |

Table 1. Two types of synthesized exploratory examples.

For the first case, the goal of  $\hat{y}_e^t > \hat{y}_e^h$  is equivalent to:

$$\begin{aligned} w_t^T z_e - w_h^T z_e &> 0 \Rightarrow \\ w_t^T (z_t + r(z_h - z_t)) - w_h^T (z_t + r(z_h - z_t)) &> 0 \end{aligned} \tag{8}$$

After expanding and transforming the inequality, we have:

$$\begin{aligned} w_t^T z_t - w_h^T z_t &> \frac{r}{1-r} (w_h^T z_h - w_t^T z_h) \\ \Rightarrow \hat{y}_t^t - \hat{y}_t^h &> \frac{r}{1-r} (\hat{y}_h^h - \hat{y}_h^t) \end{aligned} \tag{9}$$

For the second case:

$$\hat{y}_h^h - \hat{y}_h^t > \frac{r}{1-r} (\hat{y}_t^t - \hat{y}_t^h)$$

# Experiments



| Methods    |                        | CIFAR-100-LT          |                         |                       | CIFAR-10-LT             |                         |                       |
|------------|------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-------------------------|-----------------------|
| Avenue     | Imbalance Ratio $\rho$ | 100                   | 50                      | 10                    | 100                     | 50                      | 10                    |
| -          | ResNet-32 [9]          | 39.96                 | 46.01                   | 56.66                 | 71.96                   | 75.95                   | 85.92                 |
|            | + MixUp [45]           | 41.55 $\uparrow$ 1.59 | 47.11 $\uparrow$ 1.10   | 57.18 $\uparrow$ 0.52 | 73.43 $\uparrow$ 1.47   | 77.19 $\uparrow$ 1.24   | 86.37 $\uparrow$ 0.45 |
|            | + SEL                  | 44.53 $\uparrow$ 4.57 | 49.64 $\uparrow$ 3.85   | 59.17 $\uparrow$ 2.51 | 75.84 $\uparrow$ 3.88   | 79.81 $\uparrow$ 3.86   | 86.78 $\uparrow$ 0.86 |
| ICCV 2021  | IB [31]                | 40.50                 | 46.31                   | 56.75                 | 75.11                   | 79.95                   | 88.01                 |
|            | + SEL                  | 42.34 $\uparrow$ 1.84 | 47.95 $\uparrow$ 1.64   | 57.57 $\uparrow$ 0.82 | 75.04 $\downarrow$ 0.07 | 79.81 $\downarrow$ 0.14 | 88.13 $\uparrow$ 0.12 |
| CVPR 2022  | BCL [52]               | 51.76                 | 56.51                   | 67.90                 | 83.61                   | 86.13                   | 90.10                 |
|            | + SEL                  | 52.30 $\uparrow$ 0.54 | 57.25 $\uparrow$ 0.74   | 68.43 $\uparrow$ 0.53 | 84.44 $\uparrow$ 0.83   | 86.31 $\uparrow$ 0.18   | 90.26 $\uparrow$ 0.16 |
| CVPR 2022  | GCL [23]               | 46.50                 | 51.72                   | 61.79                 | 80.56                   | 84.74                   | 89.65                 |
|            | + SEL                  | 47.89 $\uparrow$ 1.39 | 52.74 $\uparrow$ 1.02   | 62.41 $\uparrow$ 0.62 | 81.86 $\uparrow$ 1.30   | 85.13 $\uparrow$ 0.39   | 89.78 $\uparrow$ 0.13 |
| CVPR 2023  | FCC+CE [22]            | 40.20                 | 45.93                   | 57.80                 | 73.80                   | 79.57                   | 87.75                 |
|            | + SEL                  | 42.33 $\uparrow$ 2.13 | 48.05 $\uparrow$ 2.12   | 58.75 $\uparrow$ 0.95 | 77.88 $\uparrow$ 4.08   | 82.10 $\uparrow$ 2.53   | 88.80 $\uparrow$ 1.05 |
| CVPR 2023  | GLMC [7]               | 53.91                 | 58.87                   | 68.07                 | 83.68                   | 86.90                   | 91.16                 |
|            | + SEL                  | 56.48 $\uparrow$ 2.57 | 61.13 $\uparrow$ 2.26   | 70.75 $\uparrow$ 2.68 | 85.40 $\uparrow$ 1.72   | 88.57 $\uparrow$ 1.67   | 92.83 $\uparrow$ 1.67 |
| TPAMI 2023 | KPS [24]               | 41.97                 | 47.92                   | 59.59                 | 82.32                   | 84.29                   | 89.10                 |
|            | + SEL                  | 44.01 $\uparrow$ 2.04 | 47.80 $\downarrow$ 0.12 | 60.03 $\uparrow$ 0.44 | 83.48 $\uparrow$ 1.16   | 84.49 $\uparrow$ 0.20   | 89.34 $\uparrow$ 0.24 |
| AAAI 2024  | H2T+CE [25]            | 42.27                 | 47.58                   | 58.24                 | 79.91                   | 82.80                   | 88.77                 |
|            | + SEL                  | 42.45 $\uparrow$ 0.18 | 47.80 $\uparrow$ 0.22   | 58.66 $\uparrow$ 0.42 | 80.43 $\uparrow$ 0.52   | 82.80 $\downarrow$ 0.00 | 88.79 $\uparrow$ 0.02 |

Table 2. Comparisons between raw methods and their SEL-enhanced counterparts on CIFAR-LT datasets.

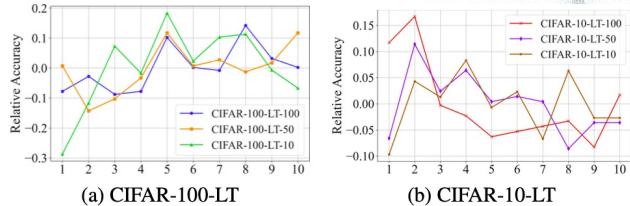



Figure 5. Changes with different neighboring class numbers.

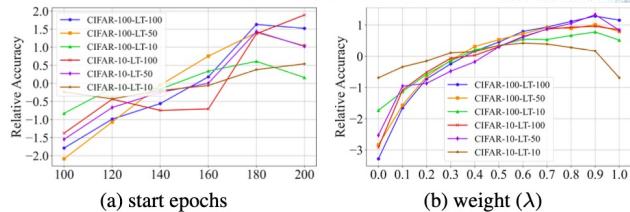



Figure 6. Changes with different parameters.



# Thank You for Listening



*Zhongquan Jian*