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Problem Setting

4D Generation

Input: Single-view Video
Output: 4D Representation
(e.g, NeRF, Gaussian Splatting, Mesh, etc)

Figure Credit: SV4D [Xie & Yao, et al.]
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Background
Multi-view Video Generator - SV4D [1]
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[1] Xie Y*, Yao CH*, Voleti V, Jiang H, Jampani V. “Sv4d: Dynamic 3d content generation with multi-frame and multi-view consistency”. arXiv preprint arXiv:2407.17470.



Background
Multi-view Video Generator - SV4D [1]
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Limitations:

e Dependent on the reference multi-views
- Not robust to self-occlusion in the first frame

Self-occlusion! Missing one leg!

First frame of Reference multi-views SV4D generated
input video from SV3D novel-view video



Background
Multi-view Video Generator - SV4D [1]
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Limitations:

e Dependent on the reference multi-views
- Not robust to self-occlusion in the first frame
- Often produces blurry details

Input video SV4D generated novel-view video



Stable Video 4D 2.0 (SV4D 2.0)



SV4D 2.0

Build upon SV4D
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SV4D 2.0

Key Modification 1 - Random mask reference multi-view
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SV4D 2.0

Key Modification 1 - Random mask reference multi-view
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SV4D 2.0

Key Modification 2 - 3D Attention
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SV4D 2.0

Key Modification 2 - 3D Attention
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SV4D 2.0

Key Modification 3 - Improving data quality

Highlighted the most

static surface with RED Inconsistent scaling Minimal motion Dark lighting

Rectifying off-center objects Filter out objects/lighting



SV4D 2.0

Key Modification 3 - Improving data quality
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SV4D 2.0

Key Modification 4 - Progressive 3D-to-4D training

Training with 4D data

SV4D training



SV4D 2.0

Key Modification 4 - Progressive 3D-to-4D training

Training with 4D data Step 1: Training with static 3D data Step 2: Training with 4D data
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Stage 1

Sv4D 2.0
Key Modification 5 - Stage-2 refinement
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SV4D 2.0

Key Modification 5 - Stage-2 refinement
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Qualitative Evaluation

Visual Comparison - Novel-view video synthesis

(The visualization results are also available on the website provided in
the Supplementary Material.)
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Visual Comparison - Novel-view video synthesis
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Qualitative Evaluation

Visual Comparison - Novel-view video synthesis
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Qualitative Evaluation

Visual Comparison - Novel-view video synthesis
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Qualitative Evaluation

Visual Comparison - Novel-view video synthesis
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Qualitative Evaluation

Visual Comparison - Novel-view video synthesis
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Visual Comparison - Novel-view video synthesis
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Qualitative Evaluation

Visual Comparison - Novel-view video synthesis
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Qualitative Evaluation

Visual Comparison - Novel-view video synthesis
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Qualitative Evaluation

Visual Comparison - Novel-view video synthesis
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Visual Comparison - Novel-view video synthesis
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Qualitative Evaluation

Visual Comparison - Novel-view video synthesis
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Qualitative Evaluation

Visual Comparison - Novel-view video synthesis
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Qualitative Evaluation

Visual Comparison - Novel-view video synthesis
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Visual Comparison

Novel-view video synthesis - Real-world data
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Visual Comparison

Novel-view video synthesis - Real-world data
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Visual Comparison

Novel-view video synthesis - Real-world data
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Visual Comparison

Novel-view video synthesis - Real-world data
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Visual Comparison

Novel-view video synthesis - Real-world data
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Visual Comparison

Novel-view video synthesis - Real-world data
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Visual Comparison

Novel-view video synthesis - Real-world data
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Qualitative Evaluation

Visual Comparison - 4D Optimization

(The visualization results are also available on the website provided in
the Supplementary Material.)



Visual Comparison

4D Optimization - Synthetic data o o ot ot
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Visual Comparison

4D Optimization - Synthetic data g e ot ot
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Visual Comparison

4D Optimization - Synthetic data g e ot ot
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Visual Comparison

4D Optimization - Real-world data wellon et worid ot (no

video prior like ours)
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4D Optimization - Real-world data wellonret o data (no

video prior like ours)
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Visual Comparison
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More Results on Real-world Video

(The visualization results are also available on the website provided in
the Supplementary Material.)



More Real-world Results

Novel-view video synthesis
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More Real-world Results

Novel-view video synthesis
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More Real-world Results

Novel-view video synthesis
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More Real-world Results

Novel-view video synthesis
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More Real-world Results

Novel-view video synthesis
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More Real-world Results

Novel-view video synthesis
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4D Optimization Results with
Continuous View and Time
Changes

(The visualization results are also available on the website provided in
the Supplementary Material.)



4D Optimization Results

Continuous View and Time Changes
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4D Optimization Results

Continuous View and Time Changes
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SV4D 2.0 with
DyNeRF vs 4D Gaussians

(The visualization results are also available on the website provided in
the Supplementary Material.)



4D Optimization

DyNeRF vs 4D Gaussians

In our sparse-view setting:
e 4D Gaussians suffer from temporal flickering and floater artifacts due to its discrete nature

e DyNeRF interpolates better across sparse views and fast motion
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