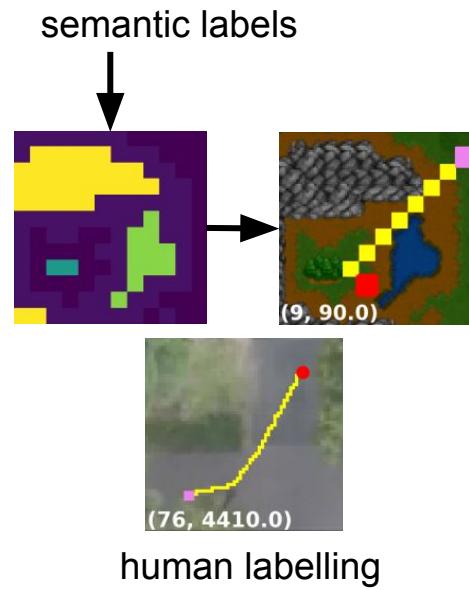
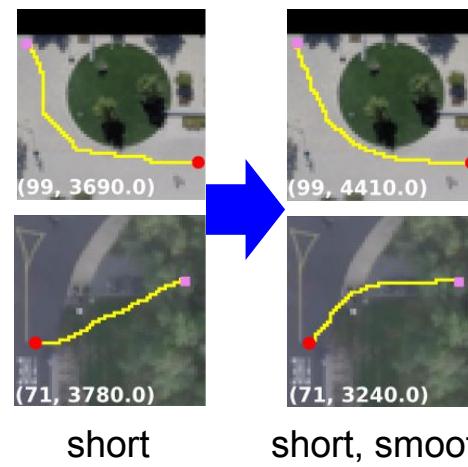
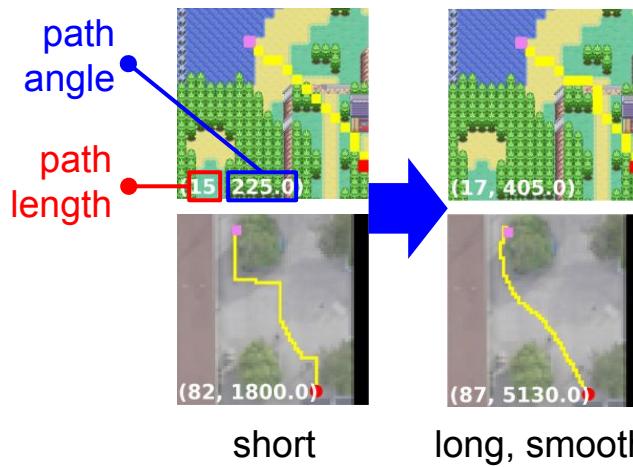


DAA*: Deep Angular A Star for Image-based Path Planning

Danny Xu

School of Computing and Information Systems
The University of Melbourne, Australia




<https://github.com/zwxu064/DAAStar.git>

Motivation

Path planning on 2D image maps

- Short path?
- Smooth path?
- Combination - heuristic from empirical path labelling!

Motivation

Path **Smoothness** is as Important as Short Path Length!

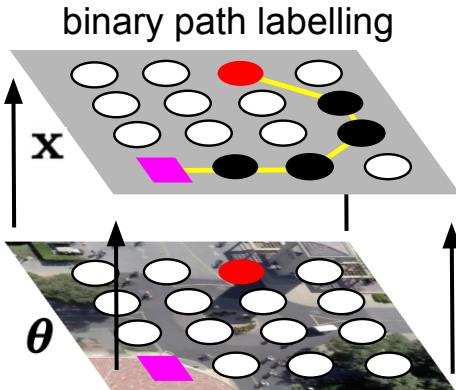
Background

- Traditional method
 - Dijkstra's algorithm (“blind” search) **shortest but inefficient**
 - A* (use a heuristic function over Dijkstra's algorithm) **imperfect heuristic**
 - Theta* (any-angle, true shortest path) **shorter, smoother but non-grid, piecewise linear**
- Learning-based method
 - Neural A* (supervised learning from path labelling) **not smoothness-aware**
 - Random-walk (explore reasonable node expansion) **inefficient, high uncertainty**
 - TransPath (supervised learning from path probability map + short path search)
expensive labelling for probability map, not end-to-end

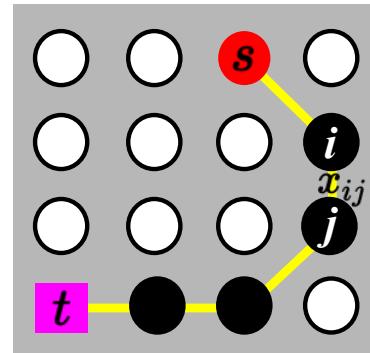
Background

Consider **both** path shortening and smoothing.

End-to-end learning with **more accessible** path labelling.

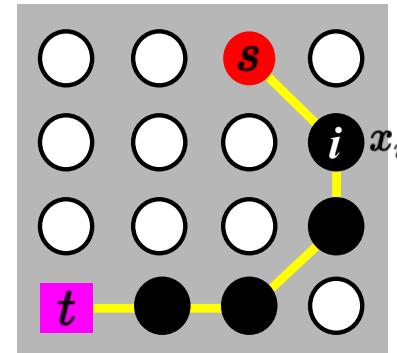

General Optimization Objective

$$\min_{\mathbf{x} \in \mathcal{B}^S} \boldsymbol{\theta}^\top \mathbf{x}, \quad \mathcal{B}^S = \{0, 1\}^S$$


subject to

$$g(i, \mathbf{x}) = \begin{cases} 2, & \forall i \notin \{s, t\} \\ 1, & \forall i \in \{s, t\} \end{cases}$$

each labelled node has two connecting edges or nodes


map with a pair of
start-target nodes

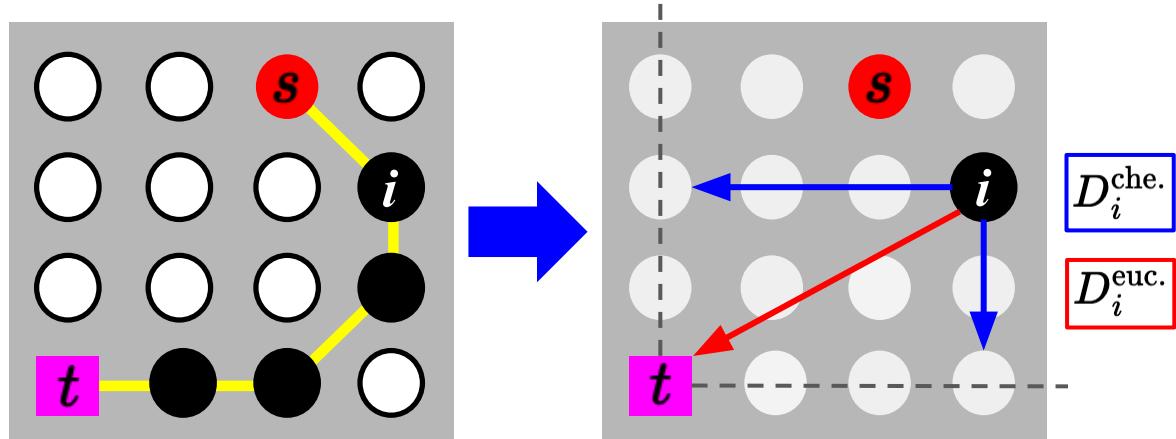
label on edges

$$g(i, \mathbf{x}) = \sum_{j \in \mathcal{N}_i} x_{ij}$$

OR

label on nodes

$$g(i, \mathbf{x}) = \sum_{j \in \mathcal{N}_i} x_j$$

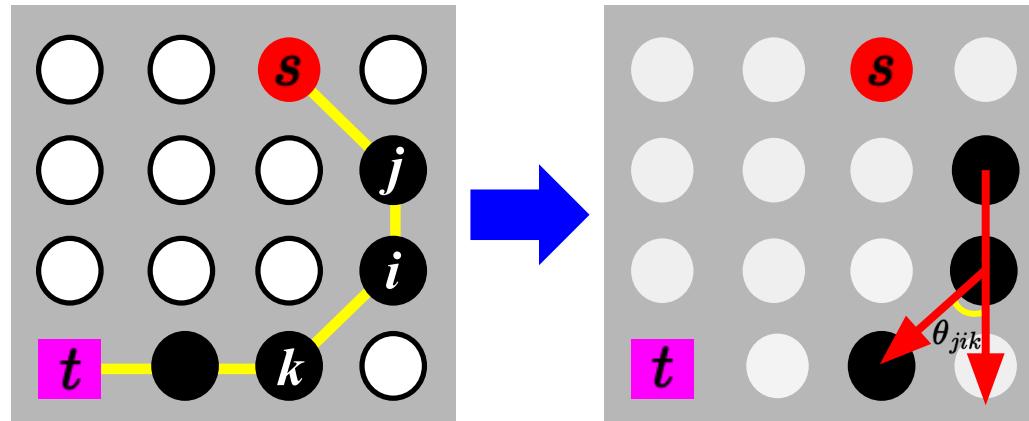

General Optimization Objective

Optimization on nodes

$$\min_{\mathbf{x} \in \mathcal{B}^N} \sum_{i \in \mathcal{V}/\{s,t\}} (\theta_i + \lambda D_i) x_i$$

subject to $||\mathcal{N}_i||_0 = 2, \forall i \in \mathcal{V}/\{s,t\}$

each labelled node has two connecting nodes



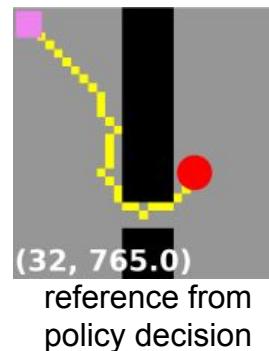
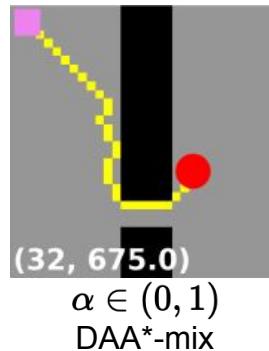
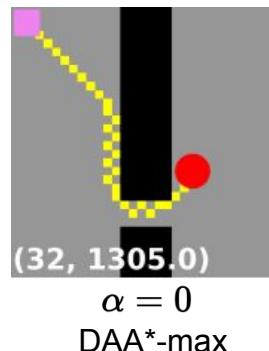
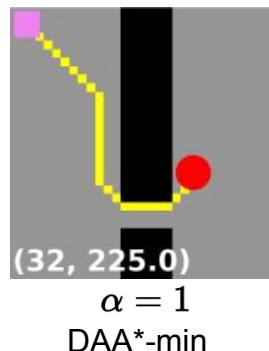
Deep Angular A*

$$\theta_{jik} = \arccos \frac{e_{ji}^\top e_{ik}}{\|e_{ji}\| \|e_{ik}\|}$$

$$\min_{\mathbf{x} \in \mathcal{B}^N} \sum_{i \in \mathcal{V}/\{s,t\}} (\theta_i + \lambda D_i) x_i + \beta \sum_{(j,k) \in \mathcal{N}_i} \theta_{jik} x_j x_i x_k$$

subject to $\|\mathcal{N}_i\|_0 = 2, \forall i \in \mathcal{V}/\{s,t\}$

Deep Angular A*

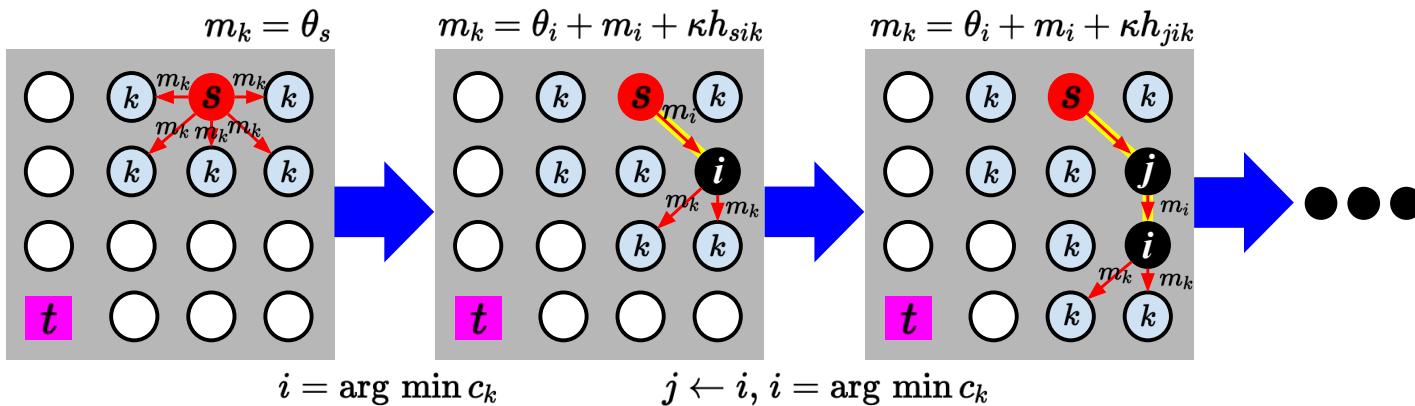




However, minimizing over the path angles will easily lead to **linear but non-smooth** path segments.

Deep Angular A*

Path angular freedom: smooth path via learning min-max angle adaptation

$$h_{jik} = \alpha\theta_{jik} + (1 - \alpha)(\pi - \theta_{jik})$$
$$\min_{\mathbf{x} \in \mathcal{B}^N} \sum_{i \in \mathcal{V}/\{s,t\}} (\theta_i + \lambda D_i) x_i + \beta \sum_{(j,k) \in \mathcal{N}_i} h_{jik} x_j x_i x_k$$

subject to $||\mathcal{N}_i||_0 = 2, \forall i \in \mathcal{V}/\{s, t\}$



Deep Angular A*

Initial m_k on all nodes are $+\infty$

$$m_k \xleftarrow{\text{update}} \begin{cases} \min(m_k, \theta_s), & k \in \mathcal{N}_s \\ \min(m_k, \theta_i + m_i + \kappa h_{jik}), & k \in \mathcal{V}/\{s \cup \mathcal{N}_s\} \end{cases}$$

$$c_k = \lambda(\theta_k + D_k) + (1 - \lambda)m_k$$

Experiment

Dataset and path labelling

	Train	Val	Test	Graph	
binary map, reference from empirical policy	MPD	800	100 ($\times 6$)	100 ($\times 15$)	32×32
	TMPD	3,200	400 ($\times 6$)	400 ($\times 15$)	64×64
	CSM	3,200	400 ($\times 6$)	400 ($\times 15$)	64×64
drone-view map, human labelling	Warcraft	2,500 ($\times 4$)	250 ($\times 4$)	250 ($\times 4$)	12×12
	Pokémon	750 ($\times 4$)	125 ($\times 4$)	125 ($\times 4$)	20×20
	SDD-intra	6,847	1,478	1,478	64×64
	SDD-inter	7,284	1,040	1,040	64×64
	Aug-TMPD	512,000	64,000	64,000	64×64

Diverse

Experiment

Evaluation metric

shortest path length

$$\text{SPR: } \frac{1}{K} \sum_{i=1}^K \mathbb{1} \left[\|\mathcal{P}_i\|_0 \leq \|\hat{\mathcal{P}}_i\|_0 \right]$$

path similarity with reference path

$$\text{CD: } \frac{1}{K} \sum_{i=1}^K \left(\sum_{x \in \mathcal{I}_i} \min_{y \in \hat{\mathcal{I}}_i} \|x - y\|_2^2 + \sum_{y \in \hat{\mathcal{I}}_i} \min_{x \in \mathcal{I}_i} \|x - y\|_2^2 \right)$$

$$\text{PSIM: } 1 - \frac{1}{K} \sum_{i=1}^K \min \left(\frac{\|\mathcal{P}_i - \hat{\mathcal{P}}_i\|_0}{2 \|\hat{\mathcal{P}}_i\|_0}, 1 \right)$$

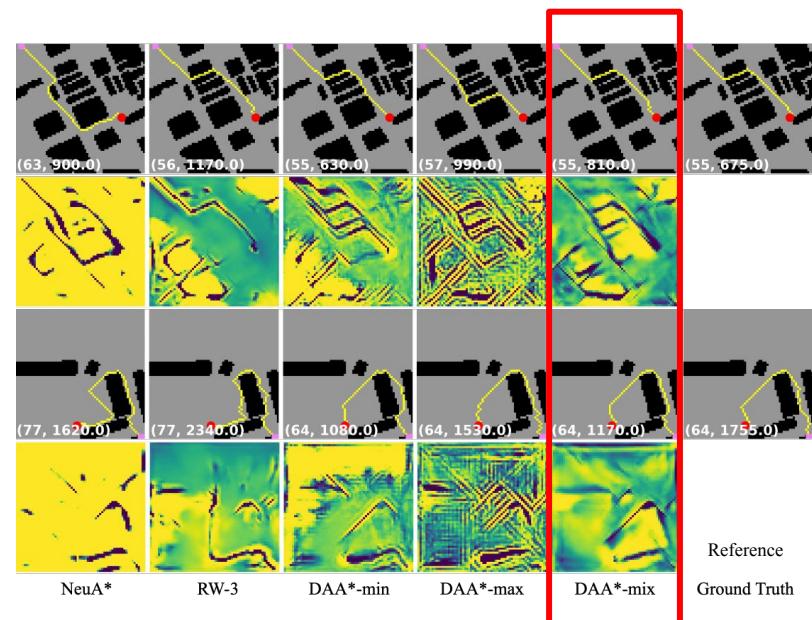
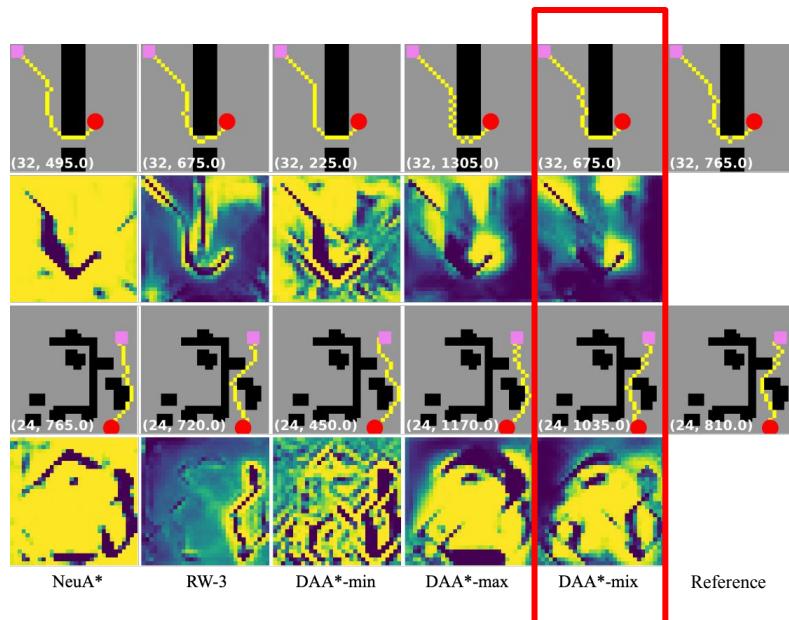
$$\text{ASIM: } 1 - \frac{1}{K} \sum_{i=1}^K \frac{\text{Area}(\mathcal{P}_{ij}, \hat{\mathcal{P}}_i)}{\cup_{j \in \mathcal{J}} \text{Area}(\mathcal{P}_{ij}, \hat{\mathcal{P}}_i)}$$

$$\text{Hist: } \frac{1}{K} \sum_{i=1}^K \frac{\|\mathcal{M}_i^c\|_0}{HW}$$

$$\text{Ep: } \frac{1}{K} \sum_{i=1}^K \frac{\max(\|\hat{\mathcal{M}}_i^c\|_0 - \|\mathcal{M}_i^c\|_0, 0)}{\|\hat{\mathcal{M}}_i^c\|_0}$$

path search efficiency

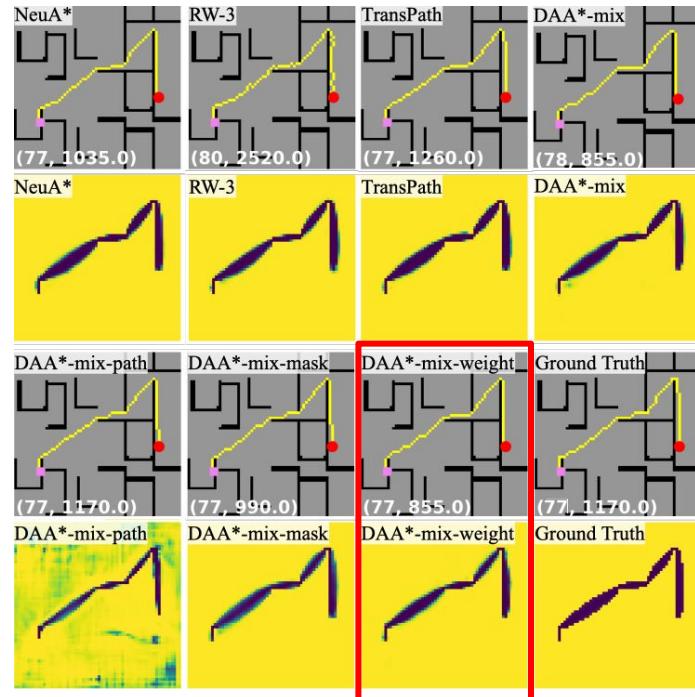
Experiment



Evaluation on binary maps

Method	SPR (%)↑	PSIM (%)↑	ASIM (%)↑	Ep (%)↑
MPD				
A*	98.70±0.0	35.20±0.0	47.27±0.0	N/A
Theta*	98.70±0.0	38.00±0.0	53.84±0.0	N/A
Neural A*	91.19±0.4	44.26±0.2	54.93±0.1	44.10±0.3
Rand-walk	82.06±1.1	46.63±0.2	55.72±0.1	0.18±0.1
DAA*-min	91.56±0.1	45.22±0.3	55.53±0.1	53.43±0.4
DAA*-max	93.53±0.3	47.95±0.2	58.89±0.1	70.96±0.4
DAA*-mix	95.56±0.4	47.83±0.1	58.72±0.1	69.99±0.1
TMPD				
A*	94.70±0.0	29.40±0.0	54.07±0.0	N/A
Theta*	91.80±0.0	28.60±0.0	51.42±0.0	N/A
Neural A*	78.63±0.6	39.04±0.1	57.47±0.1	49.86±1.1
Rand-walk	78.30±1.1	43.08±0.6	61.16±0.1	9.51±0.4
DAA*-min	81.91±1.4	40.37±0.3	59.03±0.2	63.63±0.4
DAA*-max	80.13±0.4	40.42±0.3	58.93±0.1	84.03±0.7
DAA*-mix	88.59±0.3	43.86±0.4	63.29±0.1	78.90±1.4

Method	SPR (%)↑	PSIM (%)↑	ASIM (%)↑	Ep (%)↑
CSM				
A*	94.60±0.0	27.20±0.0	53.61±0.0	N/A
Theta*	93.67±0.0	27.30±0.0	51.53±0.0	N/A
Neural A*	73.83±0.1	38.64±0.2	56.85±0.1	30.92±0.5
Rand-walk	70.38±1.1	43.77±0.2	62.67±0.1	2.57±0.1
DAA*-min	80.16±1.3	42.96±0.7	62.14±0.1	44.70±1.9
DAA*-max	74.08±1.5	40.73±0.6	59.28±0.1	83.33±1.2
DAA*-mix	82.03±1.1	44.51±0.8	64.15±0.1	76.86±1.3

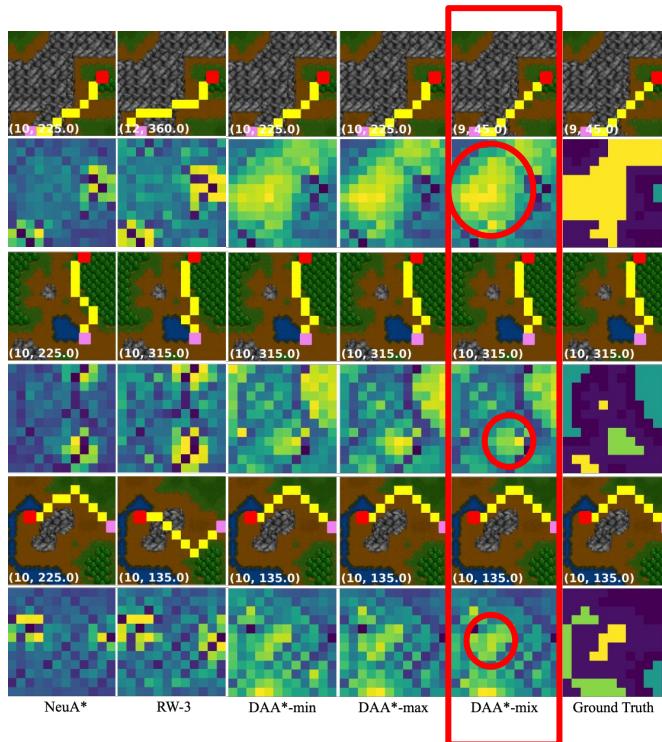
Experiment


Evaluation on binary maps

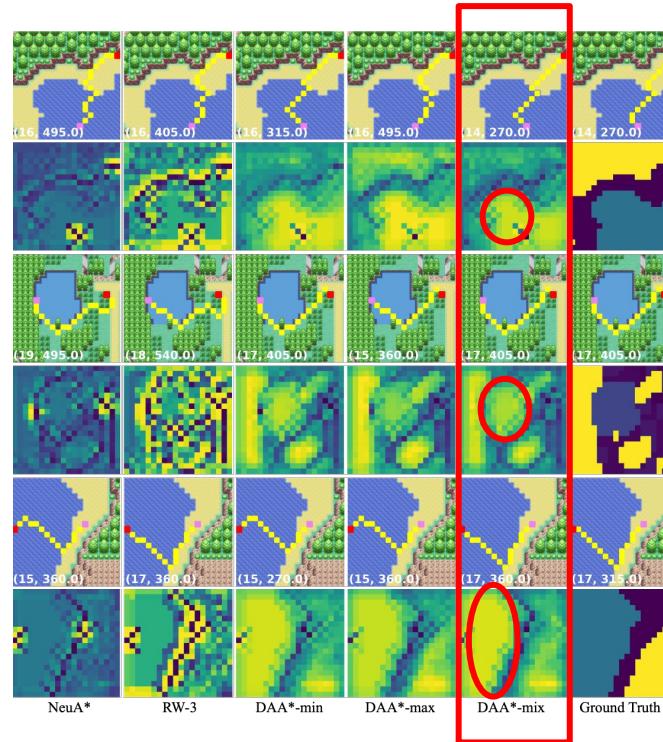
Experiment

Evaluation on binary maps - compare with SOTA TransPath

Method	SPR↑	PSIM↑	ASIM↑	Hist↓
A*	99.08	52.61	52.96	14.59
Theta*	99.65	51.76	65.18	10.53
Neural A*	90.92	50.61	62.11	1.59
Rand-walk	37.22	45.46	54.31	6.57
TransPath ²	90.62	49.78	62.53	1.83
DAA*	87.04	53.38	62.14	<u>1.68</u>
DAA*-path	94.23	56.37	65.44	4.02
DAA*-mask	96.04	54.91	<u>65.87</u>	4.02
DAA*-weight	96.87	55.73	66.20	3.66


Experiment

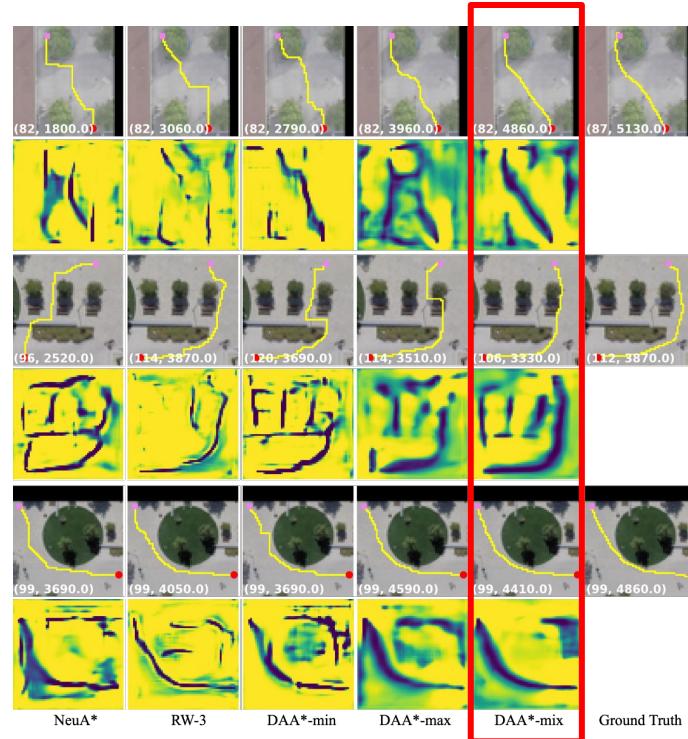
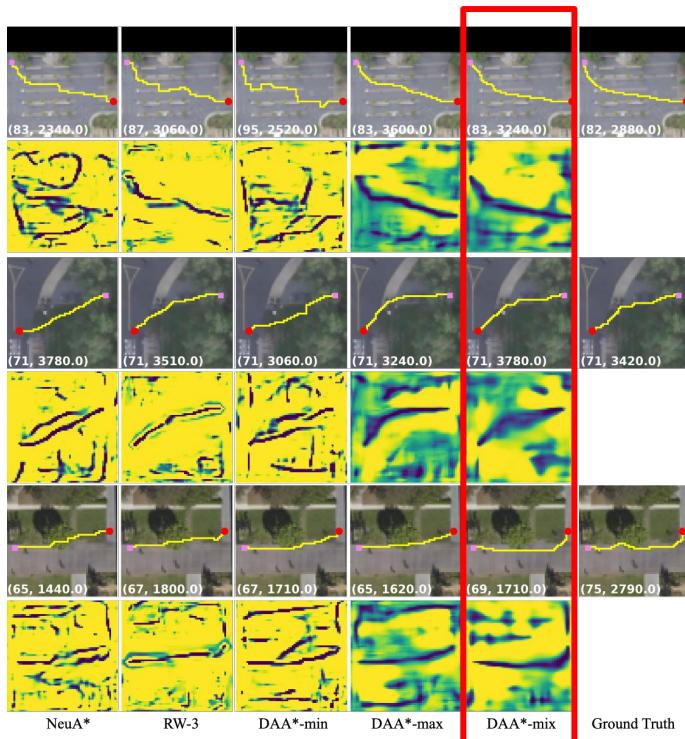
Evaluation on video-game maps


Method	SPR (%)↑	PSIM (%)↑	ASIM (%)↑	CD↓
Warcraft				
Neural A*	81.03±0.6	70.65±0.6	51.05±0.3	2.85±0.2
Rand-walk	72.68±1.0	67.95±0.4	45.09±0.1	2.94±0.1
DAA*-min	86.55±1.3	76.71±1.0	62.68±0.4	2.29±0.2
DAA*-max	86.83±0.5	75.27±0.4	60.16±0.1	2.47±0.1
DAA*-mix	89.30±0.5	75.17±0.4	60.35±0.1	2.53±0.1
Pokémon				
Neural A*	67.53±2.8	68.84±1.0	55.07±0.3	4.94±0.4
Rand-walk	52.98±1.6	63.60±1.2	43.77±0.1	5.19±0.3
DAA*-min	81.25±3.0	72.45±0.8	61.34±0.2	4.81±0.2
DAA*-max	78.00±2.1	71.11±0.3	58.45±0.1	4.82±0.1
DAA*-mix	84.70±0.8	71.49±0.4	60.02±0.1	5.18±0.2

Experiment

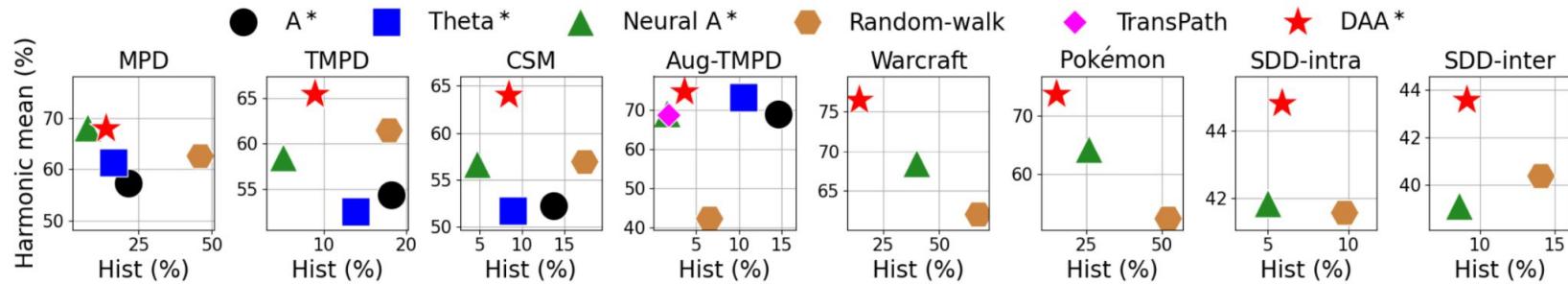
Evaluation on video-game maps

learned effective probability map



Experiment

Evaluation on drone-view maps

Method	PSIM (%)↑	ASIM (%)↑	CD↓
SDD-intra			
Neural A*	40.12±0.4	43.78±0.1	12.25±0.6
Rand-walk	40.22±0.6	43.06±0.1	10.42±0.7
DAA*-min	40.44±0.6	44.37±0.1	11.70±0.6
DAA*-max	41.90±0.7	47.45±0.1	9.39±1.2
DAA*-mix	42.12±0.4	47.82±0.1	9.03±0.2
SDD-inter			
Neural A*	35.52±0.1	43.52±0.1	23.42±0.9
Rand-walk	36.67±0.3	44.96±0.1	19.86±1.6
DAA*-min	35.71±0.3	44.50±0.1	22.47±0.9
DAA*-max	38.65±0.2	49.51±0.1	18.92±1.2
DAA*-mix	38.78±0.2	49.77±0.1	19.67±0.9


Experiment

Evaluation on drone-view maps

Experiment

Trade-off between optimality and efficiency

best path optimality (shortest length and high similarity) with considerable cost

Conclusion

- Consider the flexibility of adapting both **path shortening and smoothing**
- End-to-end with **more accessible path labelling** instead of probability map
- **Full analysis and evaluation** of smoothness effects on imitation learning