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Open-Vocabulary Segmentation (OVS)

Open-vocabulary segmentation aims at segmenting images into a set of
categories expressed through free-form text.

air conditioner, bus, bag, car,
cat, dog, drum, eyeglass, flag,
guitar, person, ski, smoke,
truck, ...
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Training-Free Open-Vocabulary Segmentation (OVS)
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« Construct a reference set for retrieval
« Retrieve and aggregate labels for class-agnostic masks

* Modify the attention mechanisms of CLIP or Diffusion model

* Improve the localization capabilities with specific design
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Training-Free Open-Vocabulary Segmentation (OVS)
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Training-Free Open-Vocabulary Segmentation (OVS)

Existing Approaches
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« Construct a reference set for retrieval
« Align and aggregate labels of class-agnostic masks

* Modify the attention mechanisms of CLIP or Diffusion model

* Improve the localization capabilities with specific design

+ Correcting VLM vulnerabilities by reference substances




Preliminary Study on Data Quality

« Comparing OVS performance between:
, a representative method that modifies CLIP attention

» Retrieving from with a simple strategy



Preliminary Study on Data Quality
Why data quality matters?

« Comparing OVS performance between:
- SCLIP, a representative method that modifies CLIP attention

* Retrieving from GT segment-text of COCO Stuff with a simple strategy
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Preliminary Study on Data Quality

Why data quality

matters?

« Comparing OVS performance between:

- SCLIP, a representative method that modifies CLIP attention

» Retrieving from the synthetic (Syn) reference set of FreeDA

VOC-21

SCLIP GT Syn

PC-459
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Without ground-truth annotations,
how to curate high-quality, densely annotated datasets?



Our Approach

ReME: A Data-Centric Framework for Training-Free OVS
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by - Data Pipeline

Real images Reference set
High-quality segment-text embeddings

Retrieval from the
reference set

Test image

M sky M grass
bus, bag, car, cat, dog,

1
' ' drum, eyeglass... | dog M horse
1
“abrown dog; “asmall cat; ! ! . tree

a brown canine” a small kitten” ! TeSt ClasseS

B mountain




Our Approach

ReME: A Data-Centric Framework for Training-Free OVS

Data Pipeline Similarity-Based Retrieval

bW Wy - Data Pipeline
A ,
T

Real images Reference set
High-quality segment-text embeddings .
Fh | ~ Testimage

Retrieval from the
reference set

M sky M grass
bus, bag, car, cat, dog,

1
’ ' drum, eyeglass... | dog M horse
1
“abrown dog; “asmall cat; ! ! . tree

a brown canine” a small kitten” ! TeSt CIaSSGS

B mountain




Our Approach

ReME: A Data-Centric Framework for Training-Free OVS

Data Pipeline Similarity-Based Retrieval

bW Wy - Data Pipeline
A ,
T

Real images Reference set
High-quality segment-text embeddings .
Fh | ~ Testimage

Retrieval from the
reference set

M sky M grass
bus, bag, car, cat, dog,

1
’ ' drum, eyeglass... | dog M horse
1
“abrown dog; “asmall cat; ! ! . tree

a brown canine” a small kitten” ! TeSt CIaSSGS

B mountain




ReME Data Pipeline

Goal:

Constructing a well-aligned, rich, and contextually relevant reference set with segment-text embeddings
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ReME Data Pipeline

Initial pairing:
Obtain a diverse base set with segment-text pairs using images as input
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ReME Data Pipeline

Data enhancing:

Leverage the superior discriminativeness of intra-modal features to clean and enrich the reference set

-

Data enhancing

Feature embeddings

egment
embe dings
Label
embeddings , !
“a brown “a white “a small
dog" dQ_g" Ves Ca_t"
Label root g
i i} |
embeddings “dog” “eat”

[, _______________ Base set

“a grassy

“a white “a stuffed
dog” fleld"
a brown “a small “its face"

N e e e o e e

A I

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Group-based filtering

Segments with same label root

Mislabeled segs

(e.g., “dog”)

- B “' . i
,5$§§3*‘= """"""""" |
" faom Intra-modar > &
similarity o

\

—|—n
i

Remove “dog” from their labels

Semantic enriching
Unique label roots

'in segment-label pairs ____,

' m dog = toy -%
i ® cat m field | =§
' m face LD

| wkitchen ™7 . |-

Top similar pairs (Synonyms)
m “bike”o"“bicycle”

. lldogll(_)llcaninell




ReME Data Pipeline
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ReME Data Pipeline

Data enhancing:

Leverage the superior discriminativeness of intra-modal features to clean and enrich the reference set
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ReME Reference Set
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ReME Similarity-Based Retrieval
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ReME Similarity-Based Retrieval
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Data Quality Comparison

« Comparing OVS performance between:

* Retrieving from G T segmeni-itext of COCO Stuff with a simple strategy

* Retrieving from the reference set of ReME
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Our results even surpass retrieval from GT segment-text data



ReME Quantitative Results

Methods Post-processing . mloU .

VOC-20 VOC-21 City PC-59 PC-60 Object Stuff A-150 PC-459 A-847
Training-free Methods without SAM
GEM [4] X 46.2 24.7 - 32.6 21.2 - 15.1 10.1 4.6 3.7
MaskCLIP [73] v 74.9 38.8 126 255 23.6 20.6 14.6 9.8 - -
ReCo [52] v 62.4 27.2 232 247 21.9 17.3 16.3 12.4 - -
SCLIP [55] v 83.5 61.7 341 36.1 31.5 32.1 239 17.8 9.3 6.1
CaR [54] v 914 67.6 151 395 30.5 36.6 11.2 177 11.5 5.0
NACLIP [21] v 83.0 64.1 383 384 35.0 36.2 257 19.1 9.0 6.5
CLIPtrase [51] v 81.2 53.0 21.1 349 30.8 39.6 241 17.0 9.9 5.9
PnP [35] v 79.1 513 193  31.0 28.0 36.2 17.9 14.2 5.5 4.2
FreeDA [3] v 87.9 554 36.7 435 38.3 374  28.8 224 10.2 53
ProxyCLIP [27] X 83.2 60.6 40.1 377 345 392 256 226 11.2 6.7
DiffSegmenter [57] v 71.4 60.1 - 27.5 25.1 379 - - - -
OVDiff [23] v 80.9 68.4 234 329 31.2 36.2 203 14.1 12.0 6.6
ReME (Ours) X 92.3 79.6 504 449 41.6 455 331 26.1 14.1 8.4
ReME (Ours - VOC) X 84.7 75.0 439 409 38.7 408 226 25.2 12.8 8.3
ReME (Ours - ADE) X 84.3 72.3 42.1 440 39.7 358 270  26.0 13.2 8.6

Training-free Methods with SAM

RIM [59] X 77.8 - - 34.3 - 44.5 - - - -
CaR w/ SAM [54] X - 70.2 16.9 405 31.1 376 124 179 11.8 5.7
CLIPtrase w/ SAM [51] X 82.3 57.1 - 36.4 32.0 42 248 172 10.6 6.0
ProxyCLIP w/ SAM [27] X 80.4 59.3 37.0 370 33.6 354 250 19.1 6.9 4.8
CorrCLIP [70] X 91.6 74.1 477 455 40.3 43.6  30.6 - - -
ReME w/ SAM (Ours) X 93.2 82.2 59.0 531 44.6 48.2 333 282 15.8 8.8

ReME outperforms all training-free baselines across ten benchmark datasets




ReME Qualitative Results

Image ProxyCLIP FreeDA ReME (Ours)
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ReME Qualitative Results
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ReME Qualitative Results

In-the-wild results obtained by prompting RelME with diverse free-form textual inputs.

Energetic golden

Portable computer A flying propeller Sunshade
retriever in motion A static cattle egret aircraft Huge boulders Beach lounger
A laying person Purple agility tunnel Peaceful blue ocean

Cozy brown couch Towel



Conclusion

A Data-Centric Framework for Training-Free Open-Vocabulary Segmentation

Data Curation Pipeline Similarity-Based Retrieval

— Data Curation Pipeline
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& + Training-Free, Flexible, Data-Centric OVS Framework

o + Scalable Data Pipeline Providing High-Quality Segment-Text
/@ Embeddings w/o Human Annotations

+ Open-Vocabulary Segmentation Surpasses all Training-Free Baselines
L’ across Ten Benchmark Datasets
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