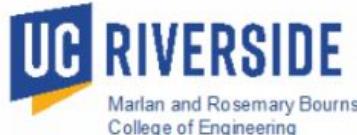


UAR-Scenes: Uncertainty-Aware Diffusion Guided Refinement of 3D Scenes

Sarosij Bose, Arindam Dutta, Sayak Nag, Junge Zhang, Jiachen Li, Konstantinos Karydis, Amit K. Roy Chowdhury

Vision and Learning Group

Center for Robotics & Intelligent Systems



Introduction/Motivation

- State-of-the-art feed forward algorithms (such as Szymanowicz et. al*, [Flash3D](#)) leverage feed-forward gaussian splatting to produce 3D scenes from sparse views or even a single image.

Source

Novel View

*Szymanowicz et. al, “Flash3D: Feed-Forward Generalizable 3D Scene Reconstruction from a Single Image”, 3DV 2025

Introduction/Motivation

- State-of-the-art feed forward algorithms (such as Szymanowicz et. al*, [Flash3D](#)) leverage feed-forward gaussian splatting to produce 3D scenes from sparse views or even a single image.
- This fast reconstruction comes at a cost: the reconstructed scenes contain **artifacts** and perform poorly in **unseen** and **occluded** regions far from the **source** view.

Source

Novel View

*Szymanowicz et. al, “Flash3D: Feed-Forward Generalizable 3D Scene Reconstruction from a Single Image”, 3DV 2025

How to Synthesize Plausible Views?

Video Diffusion Models can synthesize new views!*

Source View

Synthesis

*Blatmann et. al, “Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets” (SVD), ArXIV, 2024

How to Synthesize Plausible Views?

Video Diffusion Models can synthesize new views!*

But it can't be controlled in a particular trajectory

Source View

Uncontrolled Synthesis

How to Synthesize Plausible Views?

Video Diffusion Models can synthesize new views!*

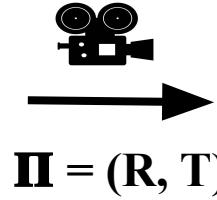
*We inject Plücker Embeddings to
condition along the trajectory*

Source View

How to Synthesize Plausible Views?

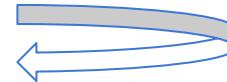
Video Diffusion Models can synthesize new views!*

*We inject Plücker Embeddings to
condition along the trajectory*



Source View

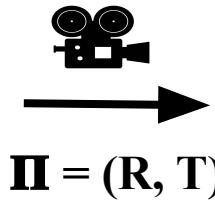
Controlled Synthesis



How to Synthesize Plausible Views?

Video Diffusion Models can synthesize new views!*

We inject Plücker Embeddings to condition along the trajectory



Source View

Controlled Synthesis

Semantic Uncertainty Quantification

- Even if plausible, *the generative prior* is not actually **aware of what it's output is**. To improve it in a self-supervised manner, we provide additional guidance in the form of **uncertainty maps**.

Plausible Synthesis

*Blatmann *et. al.*, “Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets” (SVD), *ArXIV*, 2024

*Li *et. al.*, “Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models” (BLIP2), *ICML* 2023

Semantic Uncertainty Quantification

- Even if plausible, *the generative prior* is not actually **aware of what it's output is**. To improve it in a self-supervised manner, we provide additional guidance in the form of **uncertainty maps**.
- We distill semantics from an **open-set segmentation model** to gauge uncertainty by extracting classes with an MLLM.

Plausible Synthesis

*Blatmann *et. al.*, “Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets” (SVD), *ArXIV*, 2024

*Li *et. al.*, “Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models” (BLIP2), *ICML* 2023

Semantic Uncertainty Quantification

- Even if plausible, *the generative prior* is not actually **aware of what it's output is**. To improve it in a self-supervised manner, we provide additional guidance in the form of **uncertainty maps**.
- We distill semantics from an **open-set segmentation model** to gauge uncertainty by extracting classes with an MLLM.
- The MLLM* is shown some in-context examples to act as a open-set object classifier as shown alongside.

Plausible Synthesis

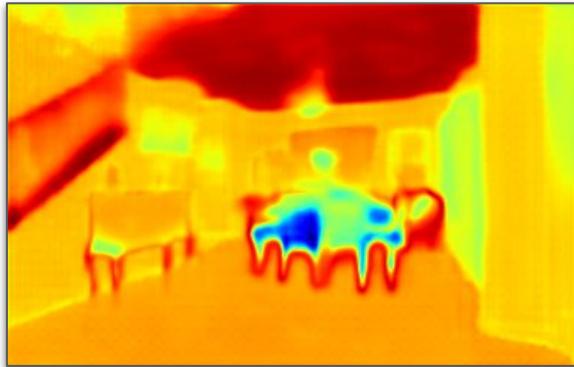
[“countertop”, “table”, “clock”, “fridge.”]

*Blatmann *et. al.*, “Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets” (SVD), ArXIV, 2024

*Li *et. al.*, “Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models” (BLIP2), ICML 2023

Semantic Uncertainty Quantification

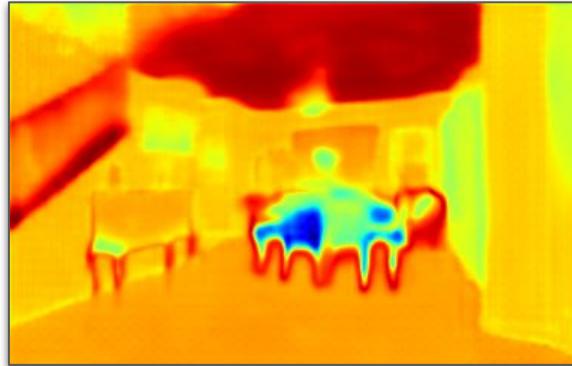
Novel View



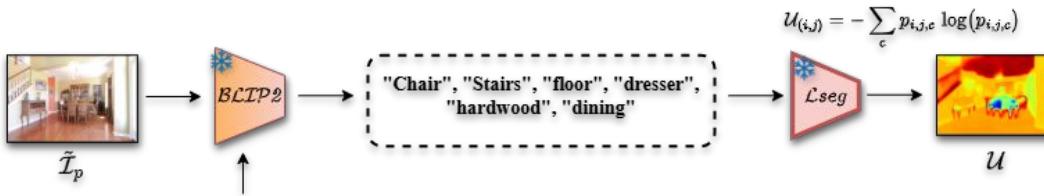
Uncertainty Map

Semantic Uncertainty Quantification

Novel View



Uncertainty Map



System Prompt

"You are an object tagging AI assistant"
"When I ask you to list all individual objects in the following image."
"Your task is to identify every object, including those partially visible,"
"and list them as comma-separated list of one-word nouns."
"Respond only with OK if you understand the instructions"

In-context Prompt

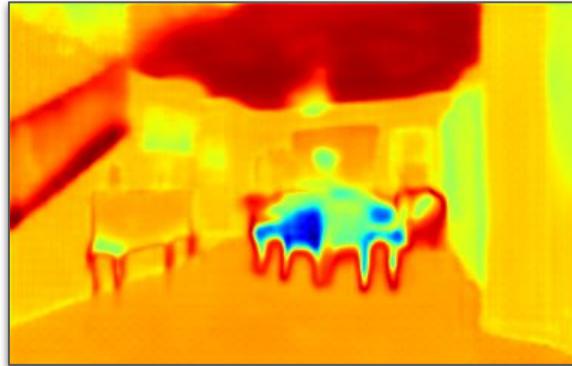
"For example, in the following image,
when I ask you to list all individual objects
in the following image."
"Your Answer: fridge, table, counter."
"Respond only with I UNDERSTAND
if you understand the example and instructions."

+

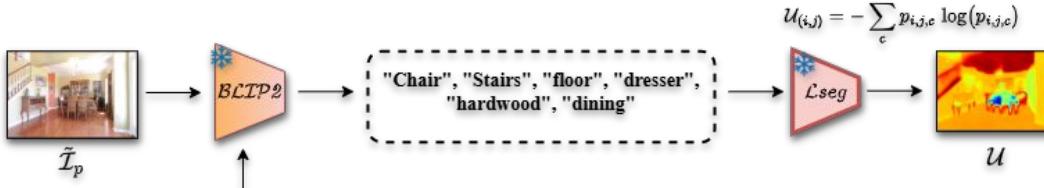
*UQ Estimation
Pipeline*

Semantic Uncertainty Quantification

Novel View



Uncertainty Map



System Prompt

"You are an object tagging AI assistant"
"When I ask you to list all individual objects in the following image."
"Your task is to identify every object, including those partially visible,"
"and list them as comma-separated list of one-word nouns."
"Respond only with OK if you understand the instructions"

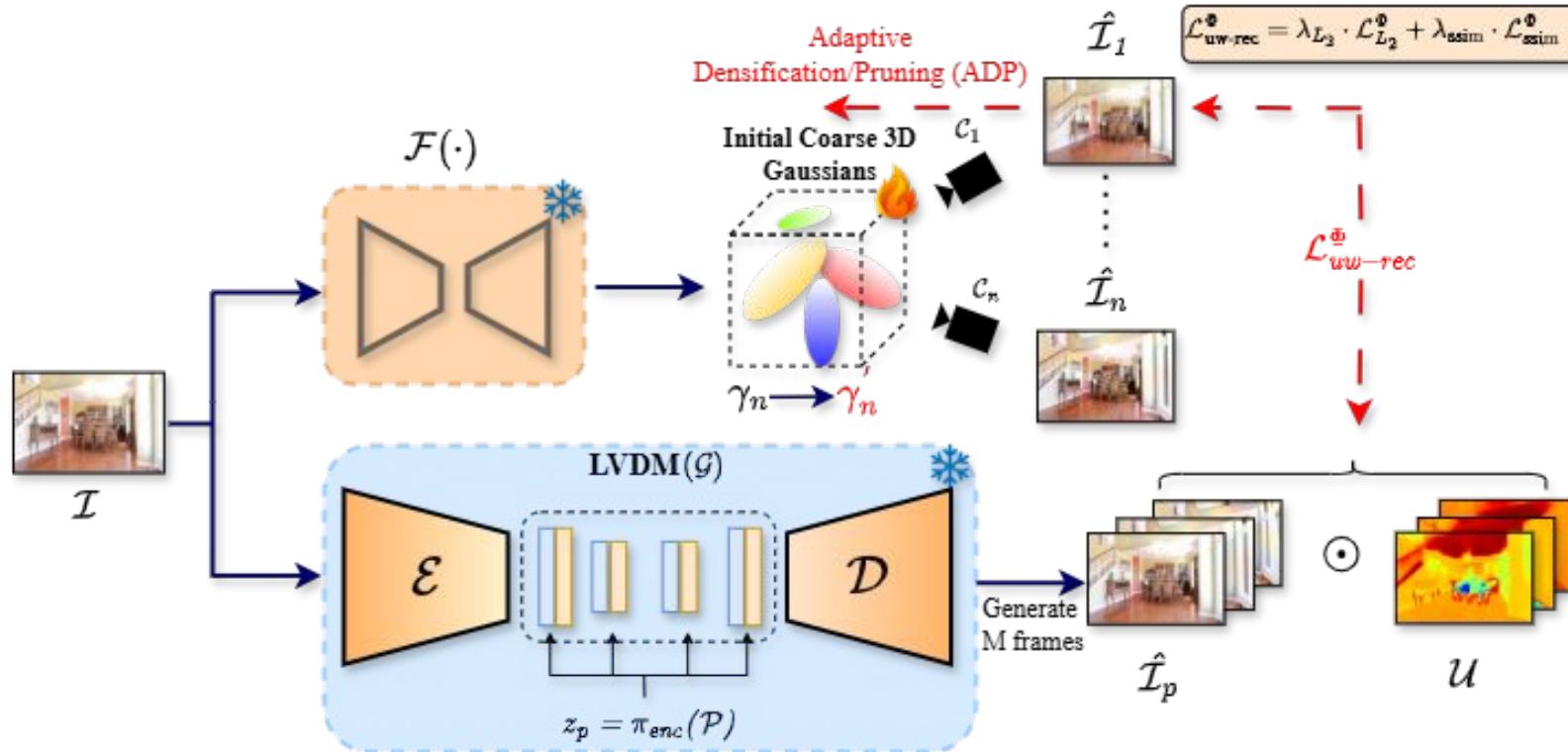
In-context Prompt

"For example, in the following image,
when I ask you to list all individual objects
in the following image."
"Your Answer: fridge, table, counter."
"Respond only with I UNDERSTAND
if you understand the example and instructions."

+

*UQ Estimation
Pipeline*

Pipeline Overview



\mathcal{I} : Input Image $\mathcal{F}(\cdot)$: FF-Network \mathcal{P} : Camera Extrinsic π_{enc} : Camera Encoder γ : 3D Gaussians $\hat{\mathcal{I}}_p$: Pseudo Views \mathcal{U} : Uncertainty Map

Quantitative Comparisons

NVS on RealEstate-10K (In-domain)

Table 1. **Novel View Synthesis.** Our model shows superior performance on RealEstate10k [26] for small, medium, and large baseline ranges. We highlight the best performance in **bold** and the second best performance in underline.

Model	5 frames			10 frames			$\mathcal{U}[-30,30]$		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
Syn-Sin [52]	–	–	–	–	–	–	22.30	0.740	–
SV-MPI [53]	27.10	0.870	–	24.40	0.812	–	23.52	0.785	–
BTS [16]	–	–	–	–	–	–	24.00	0.755	0.194
Splatter Image [29]	24.15	0.894	0.110	25.60	0.760	0.240	23.10	0.730	0.290
MINE [54]	28.45	0.897	0.111	25.89	0.850	0.150	24.75	0.820	0.179
Flash3D [1]	28.46	0.899	0.100	25.94	0.857	0.133	24.93	0.833	0.160
UAR-Scenes	28.67	0.902	0.095	26.54	0.861	0.112	27.81	0.887	0.107

Interpolation/Extrapolation on RealEstate-10K

Table 2. **Interpolation vs. Extrapolation.** We compare our method (UAR-Scenes) on the RealEstate-10K dataset against baselines on PSNR, SSIM, LPIPS, and FID metrics. We highlight the best performance in **bold** and the second best performance in underline.

Method	Interpolation			Extrapolation		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
PixelNeRF [10]	24.00	0.589	0.550	20.05	0.575	0.567
Du et al. [55]	24.78	0.820	0.410	21.23	0.760	0.480
pixelSplat [11]	25.49	0.794	0.291	22.62	0.777	0.216
latentSplat [30]	25.53	0.853	0.280	23.45	0.801	0.190
MVSplat [12]	26.39	<u>0.869</u>	<u>0.128</u>	24.04	0.812	0.185
Flash3D [1]	23.87	0.811	0.185	24.10	<u>0.815</u>	<u>0.185</u>
UAR-Scenes	<u>26.37</u>	0.871	0.125	24.37	0.819	0.144
						2.55

Quantitative Comparisons

NVS on RealEstate-10K (In-domain)

Table 1. **Novel View Synthesis.** Our model shows superior performance on RealEstate10k [26] for small, medium, and large baseline ranges. We highlight the best performance in **bold** and the second best performance in underline.

Model	5 frames			10 frames			$\mathcal{U}[-30,30]$		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
Syn-Sin [52]	–	–	–	–	–	–	22.30	0.740	–
SV-MPI [53]	27.10	0.870	–	24.40	0.812	–	23.52	0.785	–
BTS [16]	–	–	–	–	–	–	24.00	0.755	0.194
Splatter Image [29]	24.15	0.894	0.110	25.60	0.760	0.240	23.10	0.730	0.290
MINE [54]	28.45	0.897	0.111	25.89	0.850	0.150	24.75	0.820	0.179
Flash3D [1]	28.46	0.899	0.100	25.94	0.857	0.133	24.93	0.833	0.160
UAR-Scenes	28.67	0.902	0.095	26.54	0.861	0.112	27.81	0.887	0.107

Interpolation/Extrapolation on RealEstate-10K

Table 2. **Interpolation vs. Extrapolation.** We compare our method (UAR-Scenes) on the RealEstate-10K dataset against baselines on PSNR, SSIM, LPIPS, and FID metrics. We highlight the best performance in **bold** and the second best performance in underline.

Method	Interpolation			Extrapolation		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
PixelNeRF [10]	24.00	0.589	0.550	20.05	0.575	0.567
Du et al. [55]	24.78	0.820	0.410	21.23	0.760	0.480
pixelSplat [11]	25.49	0.794	0.291	22.62	0.777	0.216
latentSplat [30]	25.53	0.853	0.280	23.45	0.801	0.190
MVSplat [12]	26.39	0.869	<u>0.128</u>	24.04	0.812	0.185
Flash3D [1]	23.87	0.811	0.185	<u>24.10</u>	<u>0.815</u>	4.02
UAR-Scenes	<u>26.37</u>	0.871	0.125	24.37	0.819	0.144
				2.55		

NVS on KITTI-v2 (Out-domain)

Method	KITTI		
	PSNR↑	SSIM↑	LPIPS↓
LDI [56]	16.50	0.572	–
SV-MPI [53]	19.50	0.733	–
BTS [16]	20.10	0.761	0.144
MINE [54]	21.90	0.828	0.112
Flash3D [1]	21.96	0.826	0.132
UAR-Scenes	22.31	0.844	0.128

Qualitative Comparisons

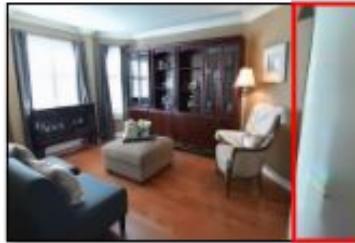
Notice that there is significant camera motion between the input view and GT view

Novel View Synthesis using our method

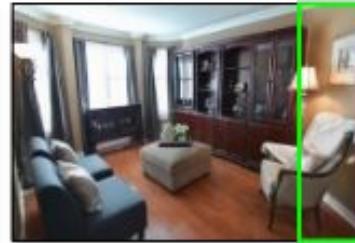
Qualitative Comparisons

Plausible Prediction Capability

Input View



Flash3D



UAR-Scenes

Ground Truth

Input View

Flash3D

Robust out-domain
performance!

UAR-Scenes

Ground Truth

Qualitative Comparisons

Flash3D

LVDM

LVDM-FST

UAR-Scenes

Oversaturated Textures with vanilla LVDM

Texture alignment with **FST**

Authors

Sarosij
Bose

Arindam
Dutta

Sayak
Nag

Junge
Zhang

Jiachen
Li

Konstantinos
Karydis

Amit K. Roy
Chowdhury

Thank You!

For more info, please
read our paper!

