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Introduction/Motivation

*Szymanowicz et. al, “Flash3D: Feed-Forward Generalizable 3D Scene Reconstruction from a Single Image”, 3DV 2025

● State-of-the-art feed forward algorithms (such 
as Szymanowicz et. al*, Flash3D) leverage 
feed-forward gaussian splatting to produce 3D 
scenes from sparse views or even a single 
image.

Novel ViewSource

https://www.robots.ox.ac.uk/~vgg/research/flash3d/
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● State-of-the-art feed forward algorithms (such 
as Szymanowicz et. al*, Flash3D) leverage 
feed-forward gaussian splatting to produce 3D 
scenes from sparse views or even a single 
image.

● This fast reconstruction comes at a cost: the 
reconstructed scenes contain artifacts and 
perform poorly in unseen and occluded 
regions far from the source view.
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How to Synthesize Plausible Views?

*Blatmann et. al, “Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets” (SVD), ArXIV, 2024

Source View Synthesis

Video Diffusion Models* can synthesize new views!



How to Synthesize Plausible Views?
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Source View Uncontrolled Synthesis

Video Diffusion Models* can synthesize new views!

But it can’t be controlled in a particular 
trajectory
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How to Synthesize Plausible Views?

*Blatmann et. al, “Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets” (SVD), ArXIV, 2024

Source View Controlled Synthesis

Video Diffusion Models* can synthesize new views!

𝚷 = (R, T)

We inject Plücker Embeddings to 
condition along the trajectory

This can now 
be used for any 

trajectory



Semantic Uncertainty Quantification

● Even if plausible, the generative prior is not 
actually aware of what it’s output is. To 
improve it in a self-supervised manner, we 
provide additional guidance in the form of 
uncertainty maps. 

*Blatmann et. al, “Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets” (SVD), ArXIV, 2024

Plausible Synthesis

*Li et. al, “Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models” (BLIP2), ICML 2023
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Semantic Uncertainty Quantification

● Even if plausible, the generative prior is not 
actually aware of what it’s output is. To 
improve it in a self-supervised manner, we 
provide additional guidance in the form of 
uncertainty maps. 

● We distill semantics from an open-set 
segmentation model to gauge uncertainty by 
extracting classes with an MLLM.

● The MLLM* is shown some in-context 
examples to act as a open-set object classifier 
as shown alongside.

*Blatmann et. al, “Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets” (SVD), ArXIV, 2024

Plausible Synthesis

[“countertop, “table”, “clock”, 
fridge.”] 

*Li et. al, “Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models” (BLIP2), ICML 2023



Semantic Uncertainty Quantification

Novel View Uncertainty Map
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Semantic Uncertainty Quantification

Simple Distillation of semantics from an 
open-set segmentation model using a 
MLLM driven prior is enough to 
estimate uncertainty!

Novel View Uncertainty Map

UQ Estimation
Pipeline



Pipeline Overview



Quantitative Comparisons

NVS on RealEstate-10K (In-domain)

Interpolation/Extrapolation on RealEstate-10K



Quantitative Comparisons

NVS on RealEstate-10K (In-domain)

Interpolation/Extrapolation on RealEstate-10K NVS on KITTI-v2 (Out-domain)



Qualitative Comparisons

Notice that there is significant camera 
motion between the input view and GT 

view

Novel View Synthesis using our method



Qualitative Comparisons
Plausible Prediction Capability

Robust out-domain 
performance!



Qualitative Comparisons

Oversaturated Textures with vanilla LVDM Texture alignment with FST
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