Local Dense Logit Relations for Enhanced Knowledge Distillation
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rContributions

€ We propose Local Dense Relational Logit Distillation (LDRLD), a novel method that captures fine-grained logit relationships more
effectively and enhances inter-class discriminability.

€ We introduce the Adaptive Decay Weight (ADW) strategy, which comprises Inverse Rank Weighting (IRW) and Exponential Rank Decay
(ERD). ADW can dynamically adjust the weights of ranked category pairs, thus enabling the student to more effectively optimize the
classification of challenging categories.

€ Extensive experimental results on diverse datasets, including CIFAR-100, ImageNet-1K, and Tiny-ImageNet, consistently show that our

method outperforms existing state-of-the-art logit-based KD methods, and justity its ability to capture and transfer critical inter-class

relationships.

Proposed LDRLD
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(a) : Local Dense Relational Logit Distillation . Local Logit Knowledge Integrity

Overview of the proposed LDRLD framework, which includes the three key loss functions

Visualization Experiment
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Experiment Results
ResNet34 (teacher): 73.31% Top-1, 91.42% Top-5 accuracy. ResNet18 (student): 69.75% Top-1, 89.07% Top-5 accuracy. Pﬂrfbl‘mﬂﬂﬂ‘ﬂ. of Student it‘chilﬂcfurﬂﬂ Performance of Student ﬁrchilccturea
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ResNet50 (teacher): 76.16% Top-1, 92.87% Top-5 accuracy. MobileNetV 1 (student): 68.87% Top-1, 88.76% Top-35 accuracy. < L el < -
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Table 3. Evaluate the top-1 and top-5 accuracy (%) of student using same and different architectures on the ImageNet-1K validation set. on CIFAR 100
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Table 4. Evaluation of the top-1 accuracy (%) of student using ViT-based heterogeneous architectures on the CIFAR100 dataset.




