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Ideographic Description Sequence (1.e., IDS)
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Main Results

Text Recognition
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(d) Handwriting Dataset

Methods | Venue |Scene Web  Doc Handw Avg
CRNN [27] PAMI'16 | 53.4 54.5 97.5 46.4 67.0
ASTER [28] PAMI’'18 | 54.6 52.3 93.1 38.9 64.7
MORAN [20] PR’19 51.7 49.5 954 39.6 64.3
SAR [10] AAATI’'19 | 62.5 54.1 94.2 33.7 67.3
SRN [40] CVPR’20 | 60.1 52.3 96.7 18.0 65.0
SEED [25] CVPR’20 | 49.6 46.3 93.7 32.1 61.2
MASTER [19] PR’21 62.8 52.1 84.4 26.9 56.6
TransOCR [2] CVPR’21 | 63.3 62.3 96.9 534 72.8
ABINet [7] CVPR’21 | 64.4 674 97.2 54.8 74.1
SVTR-B [6] , 71.7 73.8 98.2 52.2 75.2
SVIR-L[6] | WEAI221 700 741 981 536 755
CCR-CLIP [42] | ICCV’23 | 71.3 69.2 98.3 60.3 75.8
MSAZ2f - 73.7 76.5 99.2 61.5 77.1
A | - +15 24 409 412  +13
One-hot - 60.3 60.2 92.8 54.1 70.0
HierCode [48] PR’25 63.7 66.2 08.2 56.3 74.2
MSAZ2 - 65.9 69.4 98.7 59.2 75.4
Aq +2.2 432 +0.5 +2.9 +1.2
Ao ) +56 492 459  +5.1 +54

T applies the same configuration of backbone as [42] for fair comparisons.

Char | Methods | ICDAR BCTR
| | Line Scene  Web Doc  Handw
One-hot 9335 82.09 79.57 98.64 91.65
Ch HierCode [48] | 94.53 8341 8339 99.71 92.35
’ MSA?Z 95,54 8585 85.64 99.73 94.38
Aq +1.01 +244 +2.25 +0.02 +2.03
Ao +2.19 +3.76 +6.07 +1.09 +2.73
One-hot 85.56 90.24 84.67 99.37  86.59
NCh HierCode [48] | 85.65 90.27 85.19 99.54  86.61
" | MSAZ? 87.73 92,78 88.02 99.79 89.22
A1 +2.08 +2.51 +2.83 +0.25 +2.61
Ao +2.17 4254 +3.35 +042 +2.63
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Character Recognition

Methods | Venue |  Representation | Handwritten/% (m for classes) | Scene/% (m for classes)

| | Linguistics Glyph | 500 1000 1500 2000 2755  Full | 500 1000 1500 2000 3150

DenseRAN [32] | ICFHR’18 v 1.70 844 1471 1951 30.68 96.66 | 0.15 0.54 1.60 1.95 5.39

HDE [1] PR’20 v 490 1277 19.25 25.13 3349 97.14 | 082  2.11 3.11 6.96  7.75

Chen et al. [3] IICAT’21 v v 560 13.85 2288 2573 3791 9673 | 154 254 432 6.82 8.6l

CUE [21] PR’23 v 743 15775 24.01 27.04 40.55 96.96 - - - - -

SideNet [13] PR’24 v 510  16.20 33.80 44.10 50.30 - - - - - -

HierCode [48] PR’25 v 6.22 20.71 3539 45.67 56.21 97.68 | 1.67 259 454 7.02 9.13

MSA? - v v 824 26.13 40.67 5144 60.17 9885 | 205 311 498 7.65 9.68

A | - | - | +2.02 +45.96 +5.28 +5.73 +3.96 +1.17 | +0.38 +0.52 +0.44 +0.63 +0.55
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Char | Linguistics Glyph | Standard Other 76 Study on Iterations of GCCL
Compound v v g(l)gg} gggg 75‘..14
Characters % v 91.95 89.82 75 SR TR
74.92
Basic v 92.11 88.57 /
v 93.25 89.26 74 /‘ Apax= 2.03
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Random Structure Code | 124 | 94.03 9242 88 68
4 . . . . 124 | 9647  94.23 86
g - - - | 128 | 9660 94.41 M 66
16 4 - - - 136 | 96.78  94.64 <
16 8 4 4 ; 144 | 97.03  94.86 34
16 16 - - - 160 | 96.94  94.76 —e— Standard 64
16 8 8 - - 160 | 96.96  94.79 —=— Other
16 8 2 - - 136 | 96.82  94.45 82 62
16 8 - 2 4 128 | 97.12  94.89
16 8 - 1 - 120 | 97.08 94.84 30 R
16 8 . 2 2 96 | 97.24  95.05 60
16 8 - 2 1 80 | 97.35 95.12 =10 20 40 &0 65 70
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In-depth Analysis
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In-depth Analysis

How does SAGE benefit CTR?
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Key takeaways

» Structure-aware coding reduces linguistic redundancy.
» Style-adaptive glyph learning generalizes across fonts.

» Linguistic x glyph fusion improves open-set character recognition.

Limitations

» Relies on linguistic components (e.g., IDS).

» Does not model connections among same-type structures across varying depths.
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