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« Label noise learning primarily aims to mitigate the negative effects of
noisy labels on model training, a challenge that is inevitable in real-
world scenarios.
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« Existing methods (sample selection, label correction, and sample re-
weighting) often face challenges in real-world applications due to their
strong dependence on prior knowledge (e.g., noise rates, predefined
thresholds, or additional clean subsets) to sustain performance.
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* This dependence limits their adaptability and practicality in real-world
scenarios where such priors are usually unavailable.
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« We propose a novel approach for learning with noisy
labels, termed CA2C.

« This method introduces a combined asymmetric co-
learning and co-training framework that eliminates
demands for strong prior knowledge.

« CA2C incorporates cross-guidance label generation
to promote knowledge exchange between twin
models.

(¢) Our CA2C Framework
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Figure 2. The overall framework of our proposed CA2C. In our CA2C, twin models (i.e.,  p and ) with identical architectures are trained
simultaneously but employ distinct learning paradigms: partial label learning and negative learning. To promote knowledge exchange be-
tween 6 p and O, we exploit the paradigm independence inherent in our asymmetric co-learning strategy by using each model’s predictions
to cross-generate label spaces. For the P-model, we implement a memory bank to track the frequency of ) and design a confidence-based
re-weighting strategy for label disambiguation, enhancing €p’s robustness against disambiguation failures. For the N-model, we use the
complementary labels ) generated from the P-model for negative learning.
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« Asymmetric Co-learning with Paradigm Deconstruction

»Loss for optimizing partial label learning model:
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»Loss for optimizing negative learning model:
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« Asymmetric Co-training with Cross-guidance Label Generation
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« Confidence-based Re-weighting Strategy for label disambiguation
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Synthetic noisy datasets:

t Results

L CIFAR100N CIFARSON
LGl Ll Sym20% | Sym-80% | Asym-40% Sym-20% | Sym-80% | Asym-40% Average
Standard - 35.14 441 2729 2037 420 22.25 20.44
Decoupling NeurIPS 2017 33.10 3.89 26.11 43.49 10.1 33.74 25.07
Co-teaching NeurIPS 2018 43.73 15.15 28.35 60.38 16.59 42.42 34.44
Co-teaching+ ICML 2019 49.27 13.44 33.62 53.97 12.29 43.01 34.27
JoCoR CVPR 2020 53.01 15.49 32.70 59.99 12.85 39.37 35.57
DivideMix ICLR 2020 57.76 28.98 43.75 57.47 21.18 37.47 41.10
Jo-SRC CVPR 2021 58.15 23.80 38.52 65.83 29.76 53.03 44.85
Co-LDL TMM 2022 59.73 25.12 5228 58.81 24.22 50.69 45.14
UNICON CVPR 2022 55.10 31.49 49.90 54.50 36.75 51.50 46.54
SOP ICML 2022 58.63 34.23 49.87 60.17 34.05 53.34 48.38
AGCE TPAMI 2023 59.38 27.41 43.04 60.24 25.39 44.06 43.25
DISC CVPR 2023 60.28 33.90 50.56 50.33 38.23 47.63 46.82
ANL NeurIPS 2023 60.20 23.39 44.15 61.35 20.74 4731 42.86
NPN AAAI 2024 62.76 31.69 57.11 63.78 25.25 58.50 49.85
ACT MM 2024 65.51 40.74 63.48 67.09 38.58 64.40 56.63
SED ECCV 2024 66.50 38.15 58.29 69.10 42.57 60.87 55.91
Ours I - [ 6864 | 4097 | 6559 || 7006 | 4047 | 6571 | 5857

Table 1. Average test accuracy (%) on CIFAR100N and CIFAR8ON over the last ten epochs. Experiments are conducted under various

noise conditions (“Sym” and “Asym” denote the symmetric and asymmetric label noise, respectively).



Real-world noisy datasets:

Results

. .. Performances(%)
RE o EubRcaiion Eackbobe Web-Aircraft |  Web-Bird |  Web-Car ||  Average
Standard - ResNet50 60.80 64.40 60.60 61.93
Decoupling NeurIPS 2017 ResNet50 75.91 71.61 79.41 75.64
Co-teaching NeurIPS 2018 ResNet50 79.54 76.68 84.95 80.39
Co-teaching+ ICML 2019 ResNet50 74.80 70.12 76.77 73.90
PENCIL CVPR 2019 ResNet50 78.82 75.09 81.68 78.53
JoCoR CVPR 2020 ResNet50 80.11 79.19 85.10 81.47
AFM ECCV 2020 ResNet50 81.04 76.35 83.48 80.29
DivideMix ICLR 2020 ResNet50 82.48 74.40 84.27 80.38
Jo-SRC CVPR 2021 ResNet50 82.73 81.22 88.13 84.03
Co-LDL TMM 2022 ResNet50 81.97 80.11 86.95 83.01
UNICON CVPR 2022 ResNet50 85.18 81.20 88.15 84.84
SOP ICML 2022 ResNet50 84.06 79.40 85.71 83.06
AGCE TPAMI 2023 ResNet50 84.22 75.60 85.16 81.66
DISC CVPR 2023 ResNet50 85.27 81.08 88.31 84.89
ANL NeurIPS 2023 ResNet50 81.78 79.46 86.47 82.57
NPN AAAI 2024 ResNet50 83.65 79.36 85.46 82.82
ACT MM 2024 ResNet50 86.56 81.43 88.75 85.58
SED ECCV 2024 ResNet50 86.62 82.00 88.88 85.83
Ours [ = I ResNet50 I 87.70 [ 82.48 | 89.11 I 86.43

Table 2. The comparison with SOTA approaches in test accuracy (%) on real-world noisy datasets: Web- Aircraft, Web-Bird, Web-Car.

Methods || Publication || Backbone | Acc(%)
Standard - ResNet50 84.50
Decoupling NeurIPS 2017 ResNet50 85.53
Co-teaching NeurIPS 2018 ResNet50 6191
Co-teaching+ ICML 2019 ResNet50 81.61
JoCoR CVPR 2020 ResNet50 77.94
DivideMix ICLR 2020 ResNet50 85.88
PLC ICML 2021 ResNet50 85.28
WarPI PR 2022 ResNet50 85.91
CoDis ICCV 2023 ResNet50 86.13
VRI 1ICV 2024 ResNet50 86.24
Ours I - || ResNet50 |  86.83

Table 3. The comparison with SOTA approaches in test accu-

racy(%) on the large-scale, real-world noisy dataset Food101N.
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Real-world noisy datasets:

acD || X ]V acg || X [V cBRw || X || V
Sym-20% 35.14 65.22 Sym-20% 65.22 67.37 Sym-20% 67.37 68.64
Sym-80% 4.41 28.53 Sym-80% 28.53 35.90 Sym-80% 35.90 4097

Asym-40% 27.29 62.02 Asym-40% 62.02 65.06 Asym-40% 65.06 65.59

acep || X |V acg | X ||V cBRW || X || V
Sym-20% 29.37 64.81 Sym-20% 64.81 68.46 Sym-20% 68.46 70.06
Sym-80% 420 28.01 Sym-80% 28.01 36.46 Sym-80% 36.46 4047
Asym-40% 22.25 60.39 Asym-40% 60.39 64.63 Asym-40% 64.63 65.71

Table 4. Effect of key components (i.e., ACPD, ACLG and CBRW) in our CA2C on CIFAR100N (top) and CIFAR80ON (bottom). Test
accuracy (%) of our CA2C with (\/ ) and without (X ) the different components is compared under different settings.
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Figure 3. Sensitivity of Hyper-parameters: K (left) and A (right).
Experiments are conducted on CIFAR100N with Sym-20%.
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