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Federated Learning (FL)
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Same type of data in clients
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Types of Multimodal Dataset

Text-only Dataset

All samples are texts

Image-only Dataset

All samples are images

Miss-image Dataset

Some samples are complete 

The rest are text-only

Miss-text Dataset

Some samples are complete

The rest are image-only

Complete Dataset

All samples are complete 

Miss-both Dataset

Some samples are complete

The rest are image-only and text-only



Modality Missing in FL – ViLT1
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Evaluation

How to create client models and aggregate these for 

clients having different missing rates?

Train a global model

ViLTViLT ViLT ViLT ViLT

≈

1. Kim, W., Son, B. and Kim, I. Vilt: Vision-and-language transformer without convolution or region supervision. ICML 2021
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Related Works

1. Lee, Y.L., Tsai, Y.H., Chiu, W.C. and Lee, C.Y., 2023. Multimodal Prompting with Missing Modalities for Visual Recognition. CVPR 2023.

FED-PRIME

✓ State a new problem of modality missing in federated prompt-tuning

✓ Propose a method to aggregate 2 types of prompt to solve 2 problems: Address 

both inter- and intra-client heterogeneities 

Solve modality missing but 

not utilizing pretrained 

models in clients

Lead to inter-client heterogeneity 

(local prompts not aligned when 

aggregates in the server)

Apply Centralized 

method [1] to FL

FL methods

Address either 

inter-heterogeneity or 

intra-heterogeneity
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Fed-Prime Overview
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Local Training Objectives
Given input embedding after concatenated with selected inter-client prompts and intra-client prompts

𝐼𝑛𝑝𝑢𝑡𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝐹𝑒 𝑥  ∘ 𝑤𝑝
𝑖𝑛𝑡𝑒𝑟 ∘ 𝑤𝑝

𝑖𝑛𝑡𝑟𝑎

Task loss for client 𝑡 given 𝑚 data points, 𝐹𝑐 and 𝐹𝑝 are classifier (updatable) and ViLT frozen 

encoder; 𝑤𝑐 is the classifier weight, and 𝑧𝑡,𝑠  is sample’s label

𝐿𝑡 𝑤 =
1

𝑚
෍

𝑡=1

𝑚

𝑙 𝐹𝑐 𝐹𝑝 𝐼𝑛𝑝𝑢𝑡𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 ; 𝑤𝑐 , 𝑧𝑡,𝑠

Prompt relevant loss (contrastive)

𝑅𝑡 = −
1

𝑚
෍

𝑠=1

𝑚

𝑆𝑝𝑜𝑠 − 𝑆𝑛𝑒𝑔

𝑆𝑝𝑜𝑠 =  ෍

𝑖∈𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

log 𝜎 𝑞. 𝑘 𝑝𝑖 ; 𝑆𝑛𝑒𝑔 =  ෍

𝑖∈𝑢𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

log 𝜎 −𝑞. 𝑘 𝑝𝑖

Final loss

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑡 + 𝜆𝑅𝑡
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Inter-client Prompt Alignment - Server

Motivation

• Prompt positions can encode different meanings due to 

client heterogeneity (e.g., missing data, different tasks).

• Simply averaging prompts breaks semantic alignment and 

hurts performance.

• We need to group similar prompts across clients before 

aggregation.

How It Works:

1. Receive inter-prompts from all clients.

2. Group prompts by semantic similarity (clustering).

3. Alignment: Create a global (summarizing prompt pool) 

using the clusters’ centroids

4. Drop empty or unused clusters.

5. Broadcast to client to be the next inter-client prompt pool
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Experiment Results
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Prompting Analysis

Client #4 (left) Client #14 (right)
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Label-skewed NonIID

Dirichlet 𝛼 = 0.1 vs FEDPROX-P[1]

1. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A. and Smith, V., 2020. Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems.
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