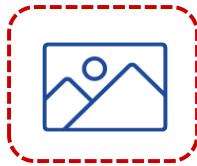

Federated Prompt-Tuning with Heterogeneous and Incomplete Multimodal Client Data

Thu Hang Phung¹, Duong M. Nguyen¹, Thanh Trung Huynh², Quoc Viet Hung Nguyen³,
Trong Nghia Hoang⁴, Phi Le Nguyen¹

¹*Institute for AI Innovation and Societal Impact, Hanoi University of Science and Technology*, ²*EPFL*,

³*Griffith University*, ⁴*Washington State University*

Federated Learning (FL)



Same type of data in clients

Types of Multimodal Dataset

Text-only Dataset

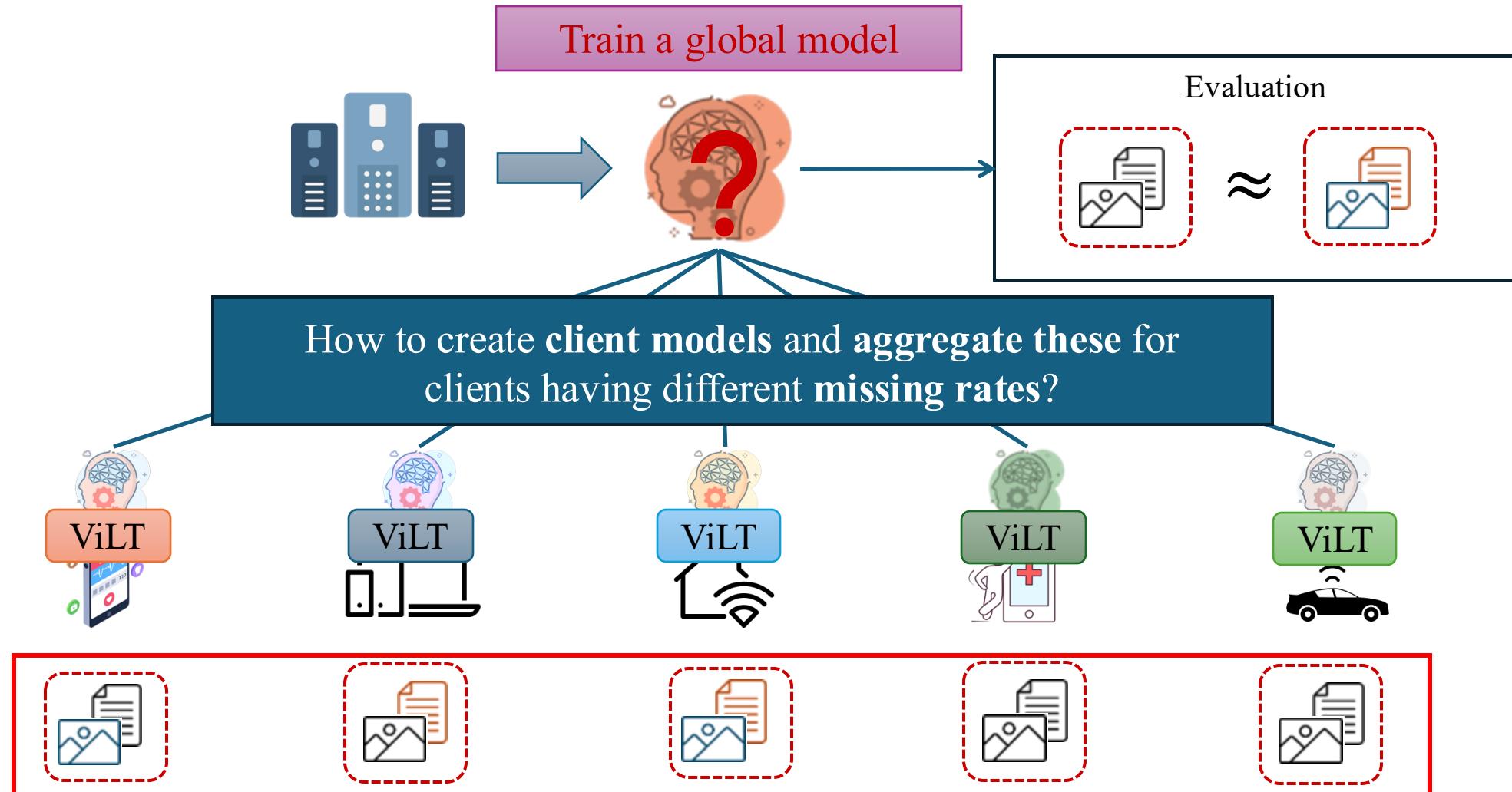
All samples are texts

Image-only Dataset
All samples are images

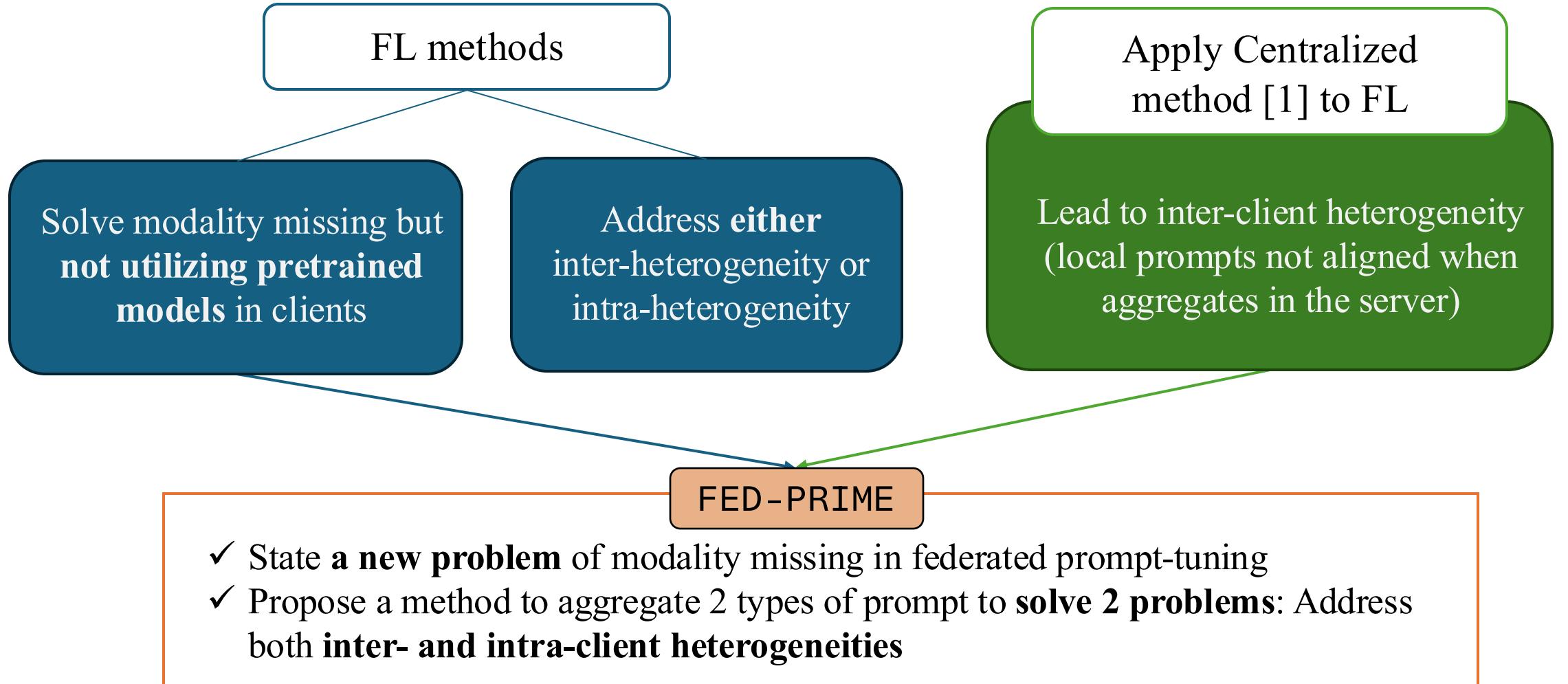
Complete Dataset

All samples are complete

Miss-both Dataset
Some samples are complete
The rest are image-only and text-only

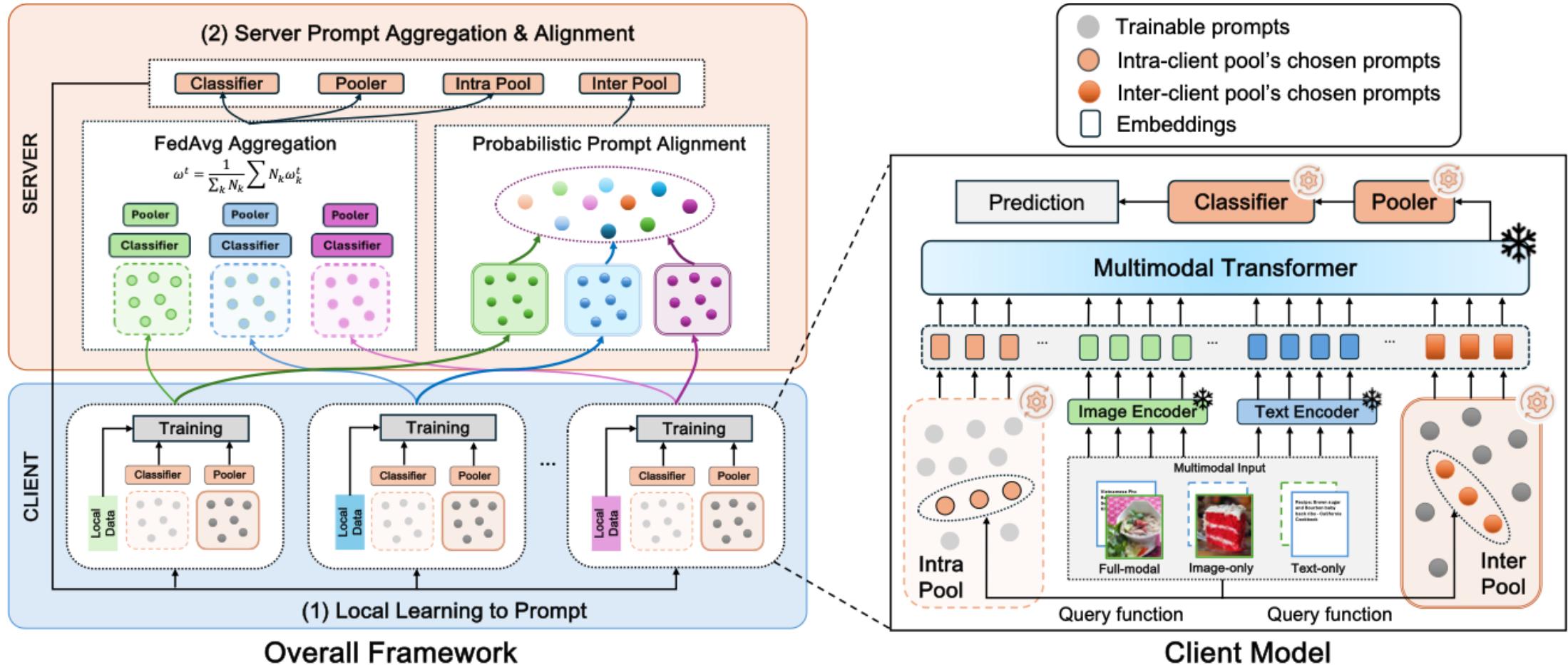

Miss-image Dataset

Some samples are complete
The rest are text-only



Miss-text Dataset
Some samples are complete
The rest are image-only

Modality Missing in FL – ViLT¹



Related Works

1. Lee, Y.L., Tsai, Y.H., Chiu, W.C. and Lee, C.Y., 2023. Multimodal Prompting with Missing Modalities for Visual Recognition. CVPR 2023.

Fed-Prime Overview

Local Training Objectives

Given input embedding after concatenated with selected inter-client prompts and intra-client prompts

$$Input_{augmented} = F_e(x) \circ w_p^{inter} \circ w_p^{intra}$$

Task loss for client t given m data points, F_c and F_p are classifier (updatable) and ViLT frozen encoder; w_c is the classifier weight, and $z_{t,s}$ is sample's label

$$L_t(w) = \frac{1}{m} \sum_{t=1}^m l(F_c(F_p(Input_{augmented})); w_c), z_{t,s})$$

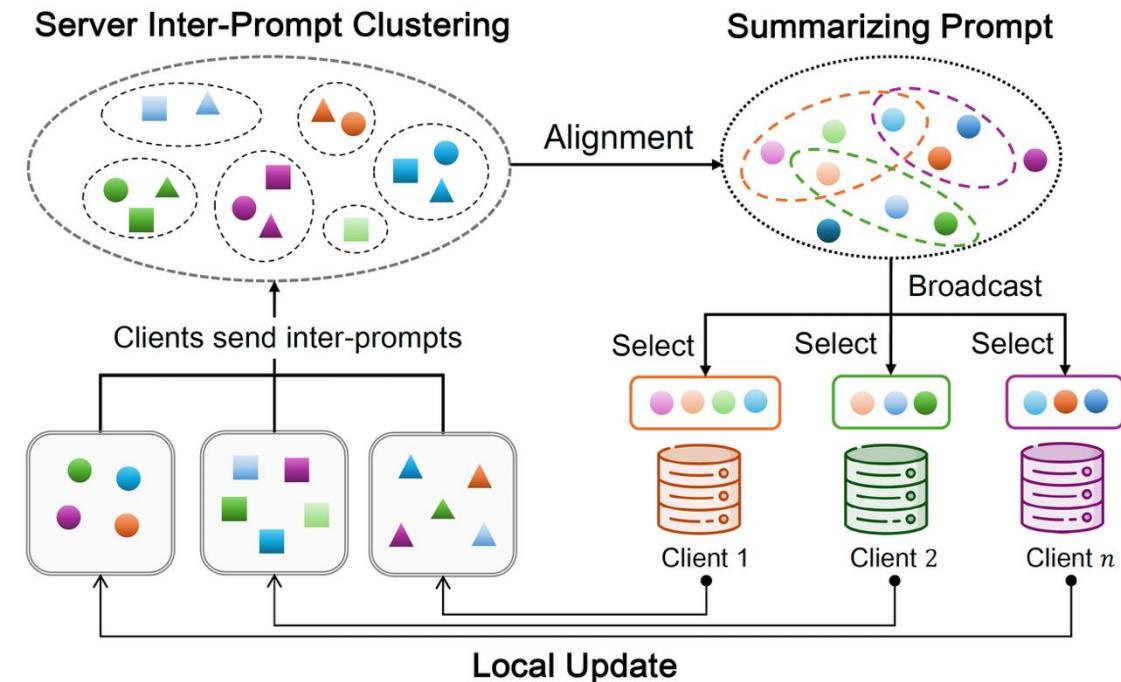
Prompt relevant loss (contrastive)

$$R_t = -\frac{1}{m} \sum_{s=1}^m [S_{pos} - S_{neg}]$$

$$S_{pos} = \sum_{i \in selected} \log(\sigma(q \cdot k(p_i))) ; S_{neg} = \sum_{i \in unselected} \log(\sigma(-q \cdot k(p_i)))$$

Final loss

$$L_{total} = L_t + \lambda R_t$$

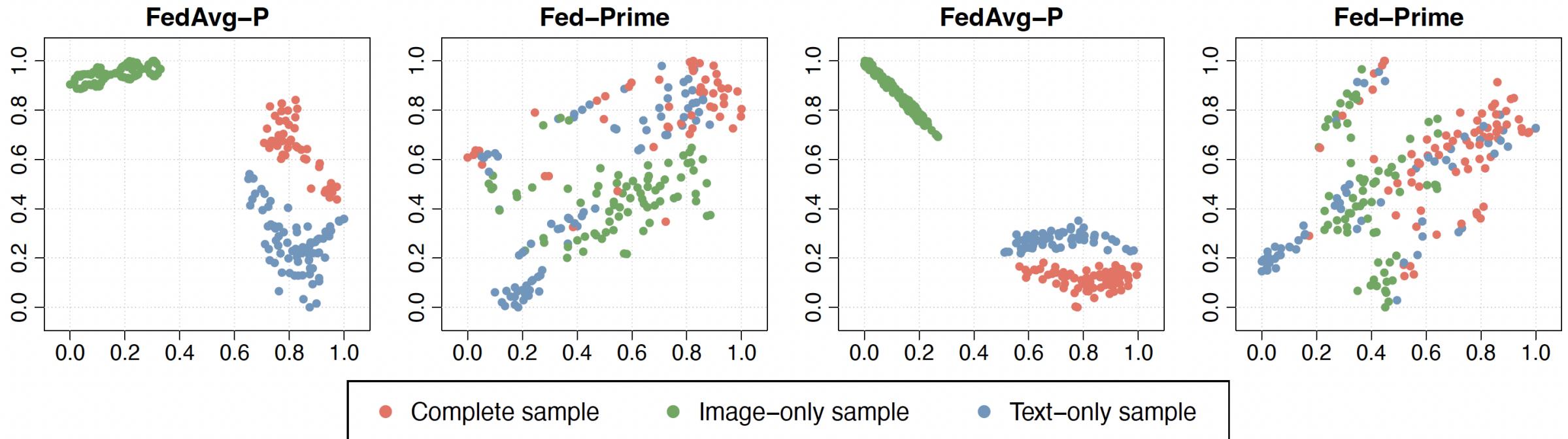

Inter-client Prompt Alignment - Server

Motivation

- Prompt positions can encode different meanings due to **client heterogeneity** (e.g., missing data, different tasks).
- Simply averaging prompts **breaks semantic alignment** and hurts performance.
- We need to **group similar prompts** across clients before aggregation.

How It Works:

1. Receive inter-prompts from all clients.
2. Group prompts by semantic similarity (clustering).
3. Alignment: Create a global (**summarizing prompt pool**) using the **clusters' centroids**
4. Drop empty or unused clusters.
5. Broadcast to client to be the **next inter-client prompt pool**



Experiment Results

Datasets		UPMC Food-101					MM-IMDB				
Train	Method	Test (~ Train)	Test (Miss Both)	Test (Full Modal)	Test (Text only)	Test (Image only)	Test (~ Train)	Test (Miss Both)	Test (Full Modal)	Test (Text only)	Test (Image only)
Miss Text	FEDAVG-P	15.71 \pm 2.27	14.90 \pm 1.57	21.56 \pm 7.81	16.91 \pm 0.69	15.36 \pm 0.43	22.42 \pm 2.27	21.89 \pm 1.34	30.78 \pm 1.65	18.40 \pm 0.06	14.53 \pm 4.56
	FEDMSPLIT-P	15.62 \pm 1.51	17.50 \pm 1.97	25.27 \pm 8.22	18.78 \pm 0.64	17.50 \pm 1.97	21.02 \pm 1.89	19.97 \pm 0.74	24.39 \pm 6.08	14.38 \pm 2.76	18.09 \pm 6.13
	FED-INTER	54.82 \pm 19.01	48.87 \pm 24.64	59.17 \pm 27.06	35.13 \pm 26.78	56.59 \pm 15.12	18.25 \pm 3.50	16.95 \pm 3.57	18.67 \pm 7.63	15.03 \pm 4.66	18.01 \pm 1.95
	FED-INTRA	61.71 \pm 17.22	48.09 \pm 19.12	62.06 \pm 26.98	22.51 \pm 5.92	62.64 \pm 11.83	13.38 \pm 1.73	12.77 \pm 0.85	12.55 \pm 1.67	11.31 \pm 0.38	14.33 \pm 1.80
	FED-PRIME	78.88 \pm 0.90	80.38 \pm 0.65	92.12 \pm 0.40	73.01 \pm 4.25	76.83 \pm 1.22	31.92 \pm 0.20	31.48 \pm 0.30	37.67 \pm 0.04	30.60 \pm 1.41	30.69 \pm 1.41
Improv. (%)		27.82 \uparrow	64.48 \uparrow	48.44 \uparrow	107.83 \uparrow	22.65 \uparrow	42.37 \uparrow	43.81 \uparrow	22.35 \uparrow	66.30 \uparrow	69.65 \uparrow
Miss Image	FEDAVG-P	17.35 \pm 4.77	15.12 \pm 1.48	16.84 \pm 2.37	18.12 \pm 6.49	14.81 \pm 0.24	27.69 \pm 5.97	22.55 \pm 3.06	31.94 \pm 0.98	23.76 \pm 11.72	12.29 \pm 0.47
	FEDMSPLIT-P	74.16 \pm 10.56	48.88 \pm 10.26	45.64 \pm 32.43	88.65 \pm 2.17	14.81 \pm 0.90	19.11 \pm 11.33	16.61 \pm 7.22	18.19 \pm 12.55	18.12 \pm 12.30	12.81 \pm 1.25
	FED-INTER	77.96 \pm 11.62	64.62 \pm 10.22	82.08 \pm 7.75	77.69 \pm 12.35	37.56 \pm 6.49	18.79 \pm 5.23	17.93 \pm 3.60	20.56 \pm 3.56	17.67 \pm 6.79	15.47 \pm 2.51
	FED-INTRA	22.84 \pm 3.52	20.13 \pm 1.72	23.48 \pm 1.86	24.46 \pm 2.99	16.66 \pm 1.32	15.75 \pm 4.34	14.06 \pm 3.16	15.68 \pm 4.77	14.53 \pm 3.65	11.71 \pm 0.42
	FED-PRIME	90.55 \pm 0.22	79.12 \pm 0.49	92.89 \pm 0.21	90.18 \pm 0.29	54.14 \pm 2.50	36.08 \pm 0.35	31.35 \pm 0.61	38.49 \pm 0.56	36.91 \pm 0.59	18.15 \pm 0.66
Improv. (%)		16.15 \uparrow	22.44 \uparrow	13.17 \uparrow	1.73 \uparrow	44.14 \uparrow	30.30 \uparrow	39.02 \uparrow	20.51 \uparrow	55.35 \uparrow	17.32 \uparrow
Miss Both	FEDAVG-P	14.57 \pm 1.50	-	17.17 \pm 4.37	16.40 \pm 4.05	13.24 \pm 0.32	26.45 \pm 2.63	-	33.03 \pm 2.56	24.12 \pm 11.30	20.21 \pm 1.98
	FEDMSPLIT-P	49.15 \pm 24.76	-	64.78 \pm 36.62	64.62 \pm 36.51	21.49 \pm 7.19	24.25 \pm 5.02	-	26.05 \pm 11.17	26.02 \pm 9.64	19.79 \pm 6.20
	FED-INTER	56.32 \pm 21.77	-	69.57 \pm 19.41	45.15 \pm 34.09	59.30 \pm 10.84	26.53 \pm 0.90	-	31.97 \pm 2.22	29.69 \pm 2.21	21.63 \pm 0.77
	FED-INTRA	49.28 \pm 32.87	-	56.70 \pm 37.90	43.24 \pm 34.19	49.85 \pm 25.44	11.90 \pm 0.37	-	12.47 \pm 0.45	11.46 \pm 0.33	12.83 \pm 0.92
	FED-PRIME	84.44 \pm 2.65	-	93.64 \pm 0.58	87.95 \pm 0.91	72.41 \pm 3.88	32.01 \pm 2.51	-	38.68 \pm 0.65	31.00 \pm 2.97	26.01 \pm 0.12
Improv. (%)		49.93 \uparrow	-	34.60 \uparrow	36.10 \uparrow	22.11 \uparrow	20.66 \uparrow	-	17.11 \uparrow	4.41 \uparrow	20.25 \uparrow

(*) **Improv.** shows the relative performance improvement between our proposal and the second-best. (in percentage).

Prompting Analysis

Figure 4.6: t-SNE plots of embeddings prior to classification on MM-IMDB under the **Miss Both** training scenario for Client #4 (left) and Client #14 (right), with two subfigures per client.

Label-skewed NonIID

Dirichlet $\alpha = 0.1$ vs FEDPROX-P^[1]

Train	Method	Test (~ Train)	Test (Miss Both)	Test (Full Modal)	Test (Text only)	Test (Image only)
Miss	FEDPROX-P	67.42	64.34	77.29	56.83	68.24
	FED-PRIME	71.20	71.15	85.08	63.91	69.56
Text	FEDPROX-P	82.56	71.26	85.24	83.05	45.31
	FED-PRIME	87.38	75.59	89.25	87.05	48.47
Image	FEDPROX-P	75.75	-	89.36	83.98	69.61
	FED-PRIME	79.98	-	91.00	86.70	70.38

1. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A. and Smith, V., 2020. Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems.

Thank you

