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Problem Definition

Autonomous Driving Rendering without Manual Labeling

» Input: Multi-view and multi-frame 1mages and lidar points.
» Output: Any-view and any-frame Images.

» Note: Without any manually labeled object positions or poses.
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Related Work

Autonomous Driving Rendering with Manual Labeling

» Street-GSU: Apply Gaussians to model the scenes and objects in manual labeled boxes.
» 4DGF?l: Make Gaussians deformable for each objects.

» Require precise manually labeled object positions and poses.
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Related Work

Autonomous Driving Rendering without Manual Labeling

» EmerNeRFBI: Self-Supervise rendering models with the features from DINO!]

» PVGLI: Fit the motions with trigonometric function and make Gaussians have life peaks.

» Unsatisfactory rendering quality.
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Methods

Modeling Motion with B-Spline Curve

» Traditional methods use trigonometric functions and neural networks for motion fitting.
» These methods cannot offer local detail fiting, resulting in artifacts.

» B-splines only optimize the nearby control points of a given training sample rather
than all points. ADD B-Spline functions could handle these problems.
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Methods

Modeling Motion with B-Spline Curve

» A k order B-Spline curve with n + 1 (k < n) control points p; can be formulated as

p(t) =) piBik(t).
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» Similarly The quaternion B-Spline curve can be formulated as!¢
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» The basic function can be quickly calculated through the matrix formatl’l.



Methods

Object-Aware Splatting with Temporal Mask

» Traditional methods split the scenes under noisy pseudo segmentations.
> Simplify the segmentation into to two class: objects and background.

» The points on an object will be deformed by the B-spline curves, otherwise they will be

considered stationary.

» Render and self-supervise object mask through a-blending:
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» 1{i € O} means whether the Gaussian represents an object.



Methods

Object-Aware Splatting with Temporal Mask

» Some objects like cars may not appear in all frames.

» Add a temporal visibility mask for the object Gaussians:
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» To make the object Gaussians appear as longer as possible, add a regularization term:
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» Ar means the average time gap between two adjacent frames.



Methods

Self-Supervised Optimization

» Render and self-supervise the inverse depth map with shift-and-scale loss!® °!:
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» Render and self-supervise the optical flow:
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» Regularization makes nearby Gaussians have similar deformations and temporal masks:
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Pipeline
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Experiments

Table 1. Quantitative comparisons on the KITTI [7] dataset. We follow the experimental setup of SUDS [32], and the color of each cell
shows the best and the second best. “Annotations” means whether the model is assisted by the manual 3D annotations.

KITTI-75% KITTI-50% KITTI-25%
Model Annotations | PSNR + SSIM 1+ LPIPS | | PSNR + SSIM 1+ LPIPS | |[PSNR1 SSIM 1 LPIPS |
StreetGS [35] v 2579 0.844 0.081 | 2552 0841 0084 | 2453 0824 0.090
ML-NSG [6] v 2838 0907 0.052 | 2751 0898 0055 | 2651 0887 0.060
4DGF [5] v 3134 0945 0.026 | 3055 00931 0028 | 2908 00908 0.036
SUDS [32] 2277 0.797 0.171 | 23.12 0821 0.135 | 20.76 0.747  0.198
Grid4D [34] 2379 0877 0.064 | 2407 0.880 0.061 | 2225 0846 0.074
PVG [2] 27.13  0.895 0.049 | 2596 0.885 0.053 | 22.59 0841 0.078
AD-GS (Ours) 29.16 0920 0.033 | 2851 0912 0035 | 2412 0.868 0.065

Table 2. Quantitative comparisons on the Waymo [29] dataset.
We mainly follow the experimental setup of StreetGS [35] with a
higher resolution 1280 x 1920, and the color of each cell shows
the best and the second best. “Annotations” means whether the
model is assisted by the manual 3D annotations. * denotes the
metric only for moving objects.

Model Annotations PSNR 1 SSIM 71 LPIPS | PSNR* 1
StreetGS [35] v 3397 0926 0.227 28.50
4DGF [5] v 3464 0940 0.244 29.77
PVG [2] 29.54 0895 0.266 21.56
EmerNeRF [36] 31.32 0.881 0301 21.80
Grid4D [34] 32,19 0921 0.253 2277
AD-GS (Ours) 3391 0927 0.228 2741

Table 3. Quantitative comparisons on the nuScenes [1] dataset.
We select six sequences with the resolution of 900 x 1600. The
color of each cell shows the best and the second best.

Model PSNR 1 SSIM1 LPIPS |
EmerNeRF [36] 27.17 0.853 0.268
PVG [2] 29.49 0.900 0.211
Grid4D [34] 30.29 0.920 0.172
AD-GS (Ours) 31.06 0.925 0.164
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Experiments

Table 4. Loss ablation on the KITTI [7] dataset. The color of each
cell shows the best and the second best.

obj&sky flow&depth reg | PSNR1 SSIM 1 LPIPS |
26.52 0.896  0.053
2698 0902  0.048
28.03 0910 0.042
v | 2916 0920 0.033
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Figure 7. Visualization of loss ablation on the KITTI [7] dataset by gradually adding the losses.

Table 5. Object modeling module ablation on the Waymo [29]
dataset. The color of each cell shows the best and the second best.
* denotes the metric only for moving objects.

sin&cos B-spline t-mask |[PSNR* + PSNR 1 SSIM 1 LPIPS |
v 2428 3261 0922 0.234
v 2570 3338 0925 0.232
v v 26.65 3365 0926 0.231
v v v 2741 3391 0927 0.228

sin & cos + B-spline + t-mask (full) Ground Truth

Figure 8. Visualization of object modeling module ablation on the
Waymo [29] dataset by gradually adding the modules.



More details and experiments

Project page: https://jlaweixu8.github.10/AD-GS-web/
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