
DIA: The Adversarial Exposure of 
Deterministic Inversion in Diffusion Models



Background

• The deepfakes generated through Text-to-Image 
(T2I) generative models are causing severe social 
problems

• In response, the technique of utilizing Adversarial 
Noise, known to disrupt model decisions, for image 
immunization is being re-examined and is 
suppressing the creation of deepfakes
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Background

• AdvDM and Photoguard became representative 
methods for disrupting generation in Diffusion Models

• Previous works

• Suppress style mimicry : Glaze

• Disrupt personalization model : Anti-Dreambooth

• However, image immunization to inhibit image editing
is still non-existent
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Background

• DIA (DDIM Inversion Attack) achieves effective immunization by directly bypassing the 
Deterministic DDIM Inversion trajectory and hindering latent code acquisition or 
reconstruction.

• Resolve the out-of-memory issue by decomposing backpropagation on a per-timestep basis
and using a method to compute the Jacobian product.
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DIA: DDIM Inversion Attack
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DDIM Sampling

𝜎𝑡 = 0

DDIM Inversion

With the assumption of linearization,



DIA: DDIM Inversion Attack
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DIA-PT: Disrupting Process Trajectory

inversion
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DIA-R: Disrupting Reconstruction

inversion

reconstruction



DIA: DDIM Inversion Attack
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Differentiable Diffusion Trajectory

• The reverse diffusion path (DDIM Trajectory) utilized in 
DIA requires timestep-wise inference.

• Accumulation of parameter gradients per timestep 
causes severe memory consumption. 

• Calculating the timestep-wise Vector-Jacobian by 
decomposing backpropagation uses a fixed amount of 
memory regardless of the trajectory length.



Experiments
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Qualitative Result



Experiments

• Experiments conducted on PIE Bench with 700 images 

• Demonstrates strong suppression performance across 9 inversion-edit scenarios (e.g., DDIM-MasaCtrl) (total 
6,300 evaluations) 

• Lower scores in Natural Edit combinations are due to editing characteristics that ignore effects of excessive 
editing or adversarial noise 

• Image editing should only modify desired regions, but also strongly suppresses background preservation 
characteristics
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Quantitative Results



Experiments
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Comparing Performance Through Noise Budget & Sampling Steps

Comparing Performance Through Purification

Comparing Perturbed Images across Immunization Methods



Q&A

Thanks!
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