

DIA: The Adversarial Exposure of Deterministic Inversion in Diffusion Models

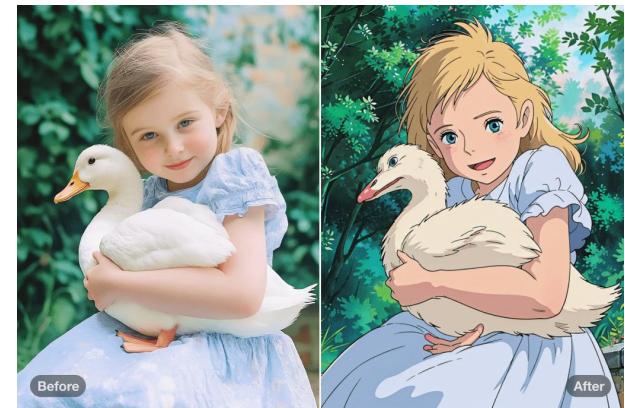
Seunghoo Hong^{1,†} Geonho Son^{2,†} Juhun Lee¹ Simon S. Woo^{1,2,★}

¹Dept. of Artificial Intelligence, ²Dept. of Computer Science & Engineering
Sungkyunkwan University, South Korea

{hoo0681, sohn1029, josejhlee, swoo}@g.skku.edu

Adversarial Attack on Image Editing

- The deepfakes generated through **Text-to-Image (T2I) generative models** are causing severe social problems
- In response, the technique of utilizing **Adversarial Noise**, known to disrupt model decisions, for **image immunization** is being re-examined and is suppressing the creation of deepfakes

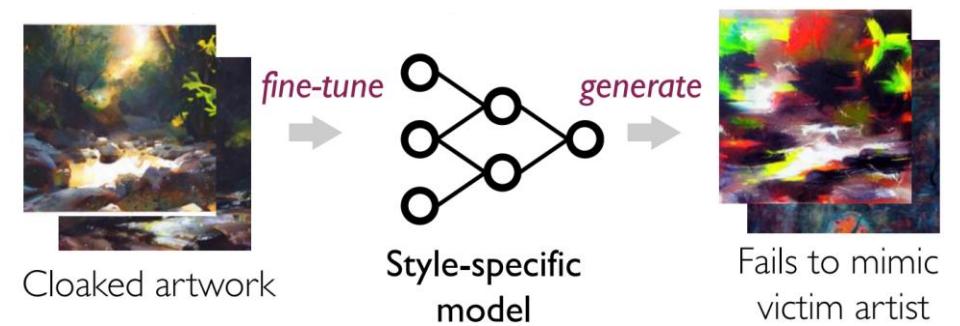
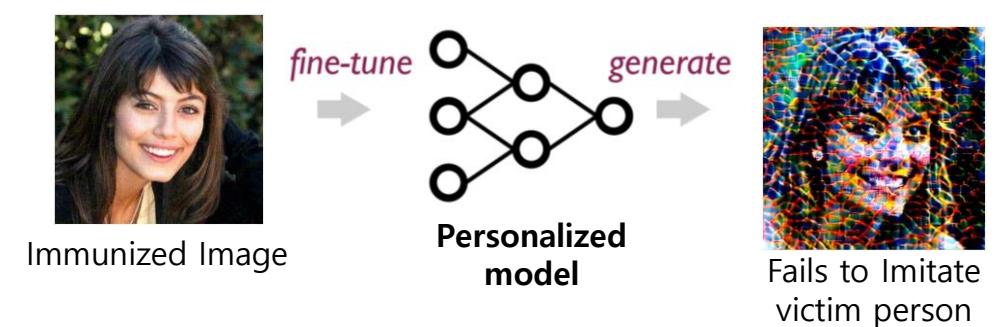


<Style Mimicry>

<Personalization>

Adversarial Attack on Image Editing

- **AdvDM** and **Photoguard** became representative methods for disrupting generation in **Diffusion Models**
- **Previous works**
 - Suppress style mimicry : **Glaze**
 - Disrupt personalization model : **Anti-Dreambooth**
- However, image immunization to inhibit **image editing** is still non-existent



Liang, Chumeng, et al. "Adversarial example does good: Preventing painting imitation from diffusion models via adversarial examples." *arXiv preprint arXiv:2302.04578* (2023).

Salman, Hadi, et al. "Raising the cost of malicious ai-powered image editing." *arXiv preprint arXiv:2302.06588* (2023).

Shan, Shawn, et al. "Glaze: Protecting artists from style mimicry by {Text-to-Image} models." *32nd USENIX Security Symposium (USENIX Security 23)*. 2023.

Van Le, Thanh, et al. "Anti-dreambooth: Protecting users from personalized text-to-image synthesis." *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2023.

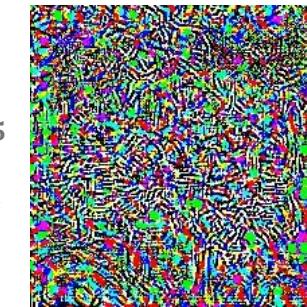
Contributions

- DIA (DDIM Inversion Attack) achieves effective immunization by **directly bypassing the Deterministic DDIM Inversion trajectory** and hindering latent code acquisition or reconstruction.
- Resolve the out-of-memory issue by **decomposing backpropagation on a per-timestep basis** and using a method to compute the Jacobian product.

a woman with red ...

Original Image

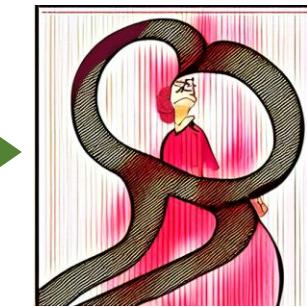
$$+ \delta_{DIA-R} \times 0.05$$
$$+ \delta_{DIA-PT} \times 0.05$$



Adversarial Noise

Edit

a [cartoon] woman with red ...



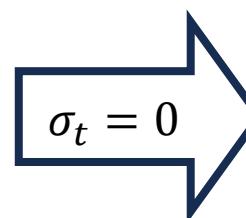
Disrupted Image
(DIA-R)

Disrupted Image
(DIA-PT)

DDIM Sampling

$$x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \left(\frac{x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(x_t, t)}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \epsilon_\theta(x_t, t) + \sigma_t z,$$

predicted x_0
 direction pointing to x_t
 $z \sim \mathcal{N}(0, I)$.

$$\sigma_t = 0$$


$$x_t = \frac{\sqrt{\bar{\alpha}_t}}{\sqrt{\bar{\alpha}_{t-1}}} x_{t-1} + \sqrt{\bar{\alpha}_t} (\lambda(t-1)) \epsilon(x_t, t)$$

$$\text{where } \lambda(t) := \sqrt{\frac{1}{\bar{\alpha}_{t+1}} - 1} - \sqrt{\frac{1}{\bar{\alpha}_t} - 1}$$

DDIM Inversion

With the assumption of linearization,

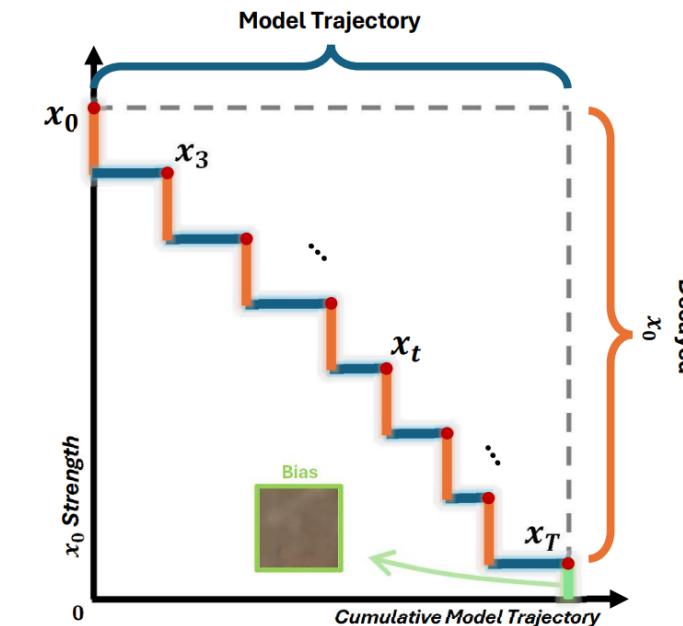
$$\epsilon(x_t, t) \approx \epsilon(x_{t-1}, t)$$

$$x_{t+1} = \sqrt{\alpha_{t+1}} x_t + \underbrace{\sqrt{\bar{\alpha}_{t+1}} (\lambda(t)) \epsilon_\theta(x_t, t+1)}_{\text{noising part } \Delta_t}$$

DIA-PT: Disrupting Process Trajectory

$$x_T = \underbrace{\sqrt{\bar{\alpha}_T} x_0}_{\text{bias}} + \underbrace{\sum_{i=0}^T \frac{\sqrt{\bar{\alpha}_T}}{\sqrt{\bar{\alpha}_{i+1}}} \Delta_i}_{\text{MT}}$$

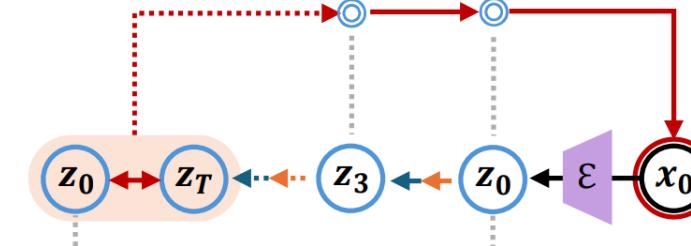
$$x_T = x_0 + \underbrace{(\sqrt{\bar{\alpha}_T} - 1)x_0 + \sum_{i=0}^t \frac{\sqrt{\bar{\alpha}_T}}{\sqrt{\bar{\alpha}_{i+1}}} \Delta_i}_{\text{PT}}$$



a) Components of DDIM Process

$$\delta_{\text{DIA-PT}} = \arg \max_{\|\delta\| \leq \epsilon} \|\hat{x}_{0:T}(x_0 + \delta) - \mathcal{E}(x_0 + \delta)\|_2^2,$$

inversion

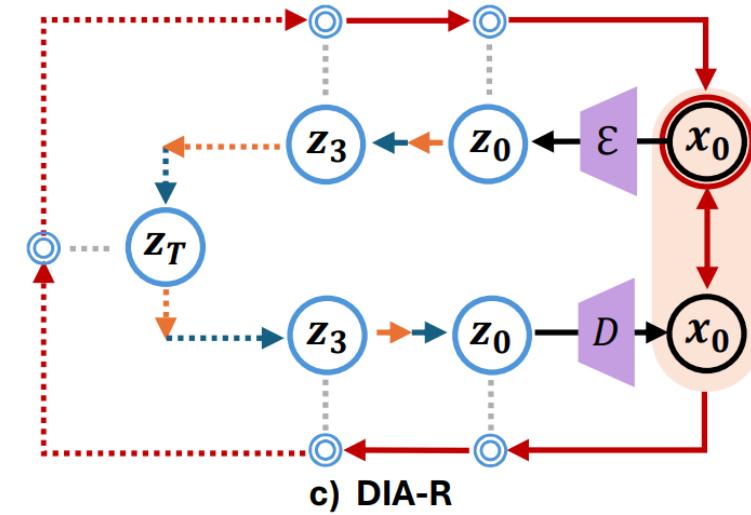


b) DIA-PT

DIA-R: Disrupting Reconstruction

$$\delta_{\text{DIA-R}} = \arg \max_{\|\delta\| \leq \epsilon} \|\tilde{x}_{T:0}(\hat{x}_{0:T}(x_0 + \delta)) - (x_0 + \delta)\|_2^2$$

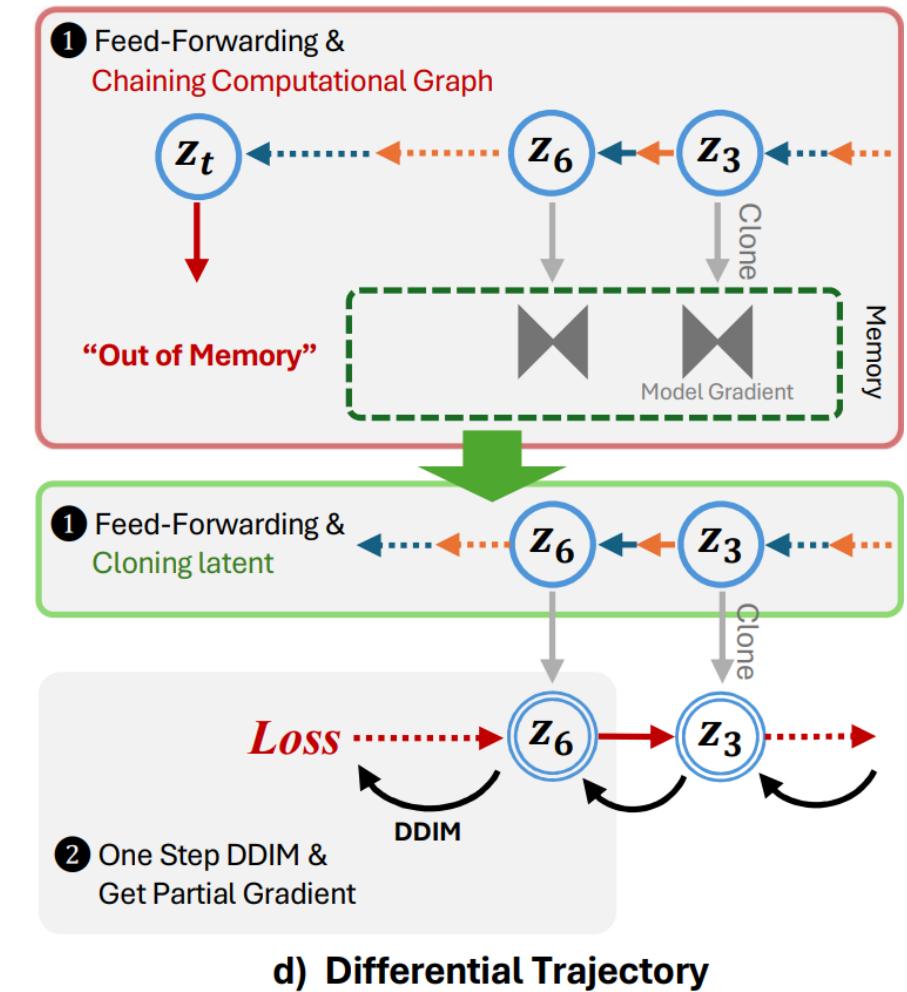
inversion
reconstruction



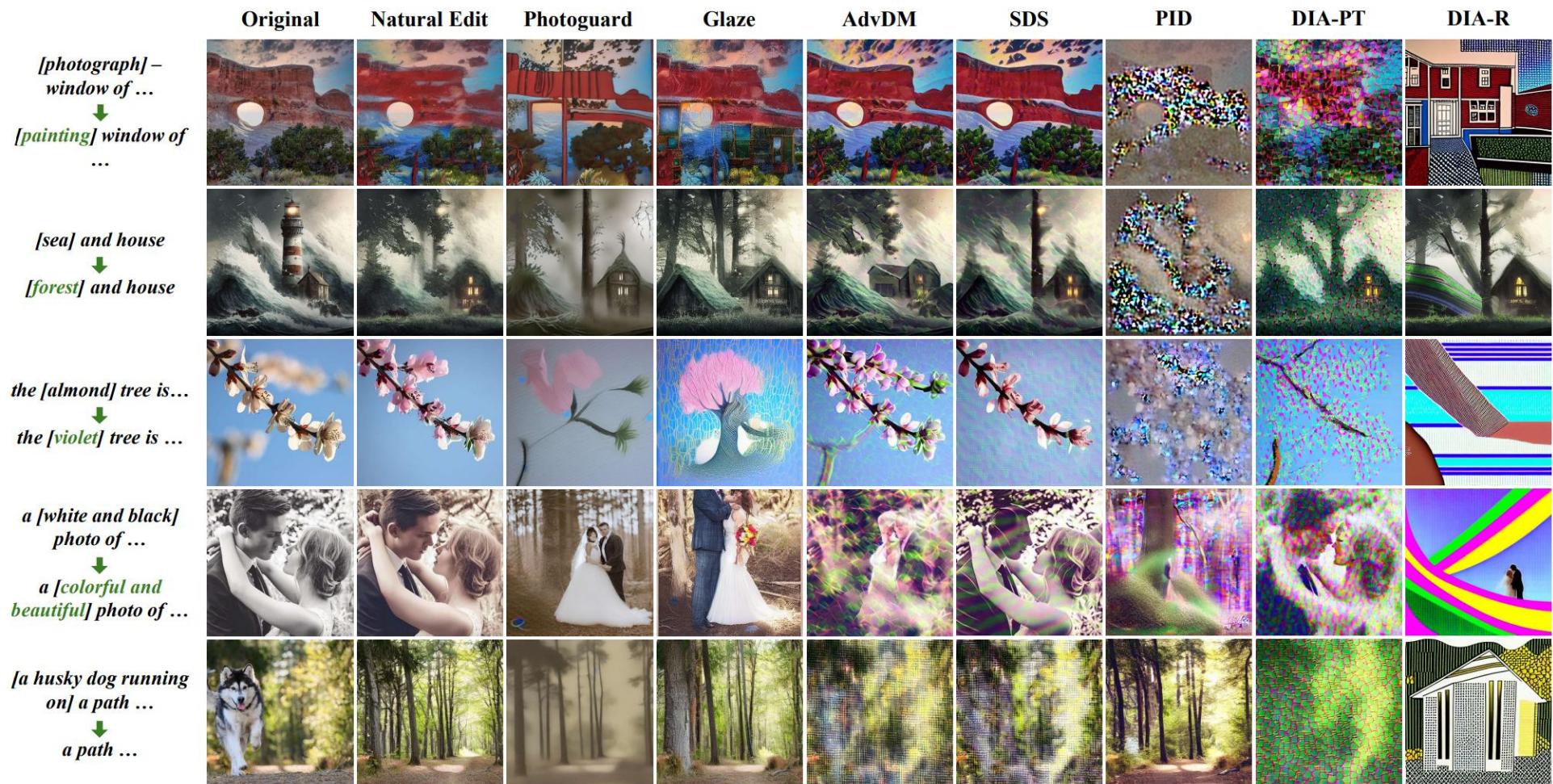
Differentiable Diffusion Trajectory

- The reverse diffusion path (DDIM Trajectory) utilized in DIA requires timestep-wise inference.
- Accumulation of parameter gradients per timestep causes severe memory consumption.
- Calculating the timestep-wise Vector-Jacobian by decomposing backpropagation uses a fixed amount of memory regardless of the trajectory length.

$$\nabla_{h_t} \mathcal{J} = \begin{cases} \frac{\partial \mathcal{L}}{\partial h_t}, & t = T \\ \nabla_{h_{t+1}} \mathcal{J} \cdot J_{\text{VAE}}(h_t), & t = 0 \\ \nabla_{h_{t+1}} \mathcal{J} \cdot J_{\text{DDIM}}(h_t), & \text{otherwise} \end{cases}$$



Qualitative Result



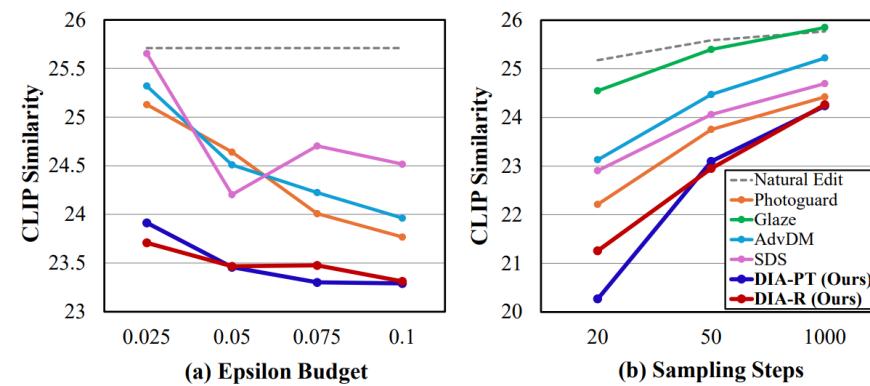
Quantitative Results

| Inversion | DDIM Inversion | | | | Null-Text Inversion | | Negative-Prompt Inversion | | Direct Inversion | |
|---------------|----------------|----------------|----------------|----------------|---------------------|-------------------|---------------------------|-------------------|------------------|--|
| | Edit | DDIM | MasaCtrl | PnP | P2P | Proximal-Guidance | P2P | Proximal-Guidance | P2P | |
| Natural Edit | 25.7100 | 24.9504 | 26.1413 | 25.9123 | 25.5750 | 24.8495 | 25.4566 | 25.2090 | 25.8333 | |
| PhotoGuard | 24.6400 | 22.8856 | 24.7364 | 25.9267 | 24.0286 | 22.8213 | 21.6895 | 21.3095 | <u>26.0429</u> | |
| Glaze | 25.5147 | 23.8529 | 26.0200 | <u>25.9394</u> | 25.5676 | 24.2446 | 24.0998 | 23.8052 | 26.6814 | |
| AdvDM | 24.5179 | 22.3192 | 23.2544 | 26.1522 | 23.7018 | 21.4290 | 18.9884 | 18.7983 | 26.2887 | |
| SDS | 24.2051 | 23.1265 | 23.4413 | 25.9414 | 24.0519 | 21.7499 | 19.8636 | 19.7851 | 25.7531 | |
| PID | 21.2091 | 23.8213 | 25.6779 | 25.9553 | 24.8942 | 23.6791 | 23.2155 | 22.9292 | 26.9447 | |
| DIA-PT (ours) | 23.4614 | 18.3076 | <u>20.7749</u> | 26.0381 | <u>23.1999</u> | <u>20.0267</u> | <u>17.4938</u> | <u>17.3992</u> | 26.0563 | |
| DIA-R (ours) | 23.4626 | <u>19.3155</u> | 18.4336 | 26.0173 | 22.3095 | 18.7471 | 15.0552 | 14.8728 | 26.3062 | |

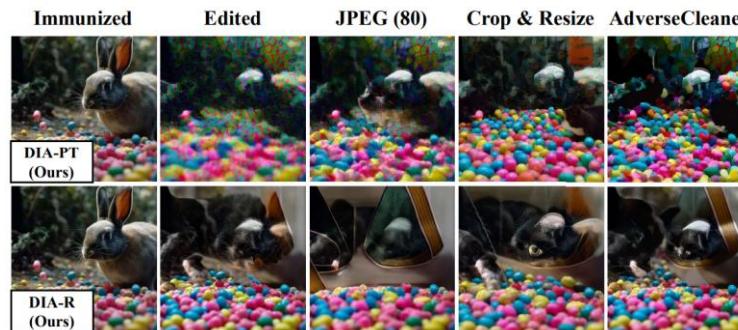
| Metrics | Structure | | Background Preservation | | | |
|---------------|-----------|---------------------|-------------------------|------------------|----------------|-------------------|
| | Method | Distance \uparrow | PSNR \downarrow | LPIPS \uparrow | MSE \uparrow | SSIM \downarrow |
| Natural Edit | | 0.0249 | 24.3767 | 0.0914 | 0.0071 | 0.8124 |
| PhotoGuard | | 0.0773 | 19.6509 | 0.2617 | 0.0148 | 0.6584 |
| Glaze | | 0.0440 | 21.3841 | 0.1927 | 0.0111 | 0.6958 |
| AdvDM | | 0.0940 | 19.6309 | 0.2838 | 0.0167 | 0.5933 |
| SDS | | 0.0685 | 20.5587 | 0.2703 | 0.0135 | 0.6232 |
| PID | | 0.0630 | 20.0265 | 0.2878 | 0.0151 | 0.6211 |
| DIA-PT (ours) | | <u>0.1059</u> | <u>18.2202</u> | 0.3410 | <u>0.0237</u> | 0.5653 |
| DIA-R (ours) | | 0.1252 | 16.3055 | <u>0.2940</u> | 0.0460 | 0.5903 |

- Experiments conducted on PIE Bench with 700 images
- Demonstrates strong suppression performance across 9 inversion-edit scenarios (e.g., DDIM-MasaCtrl) (total 6,300 evaluations)
- Lower scores in Natural Edit combinations are due to editing characteristics that ignore effects of excessive editing or adversarial noise
- Image editing should only modify desired regions, but also strongly suppresses background preservation characteristics

Comparing Performance Through Noise Budget & Sampling Steps

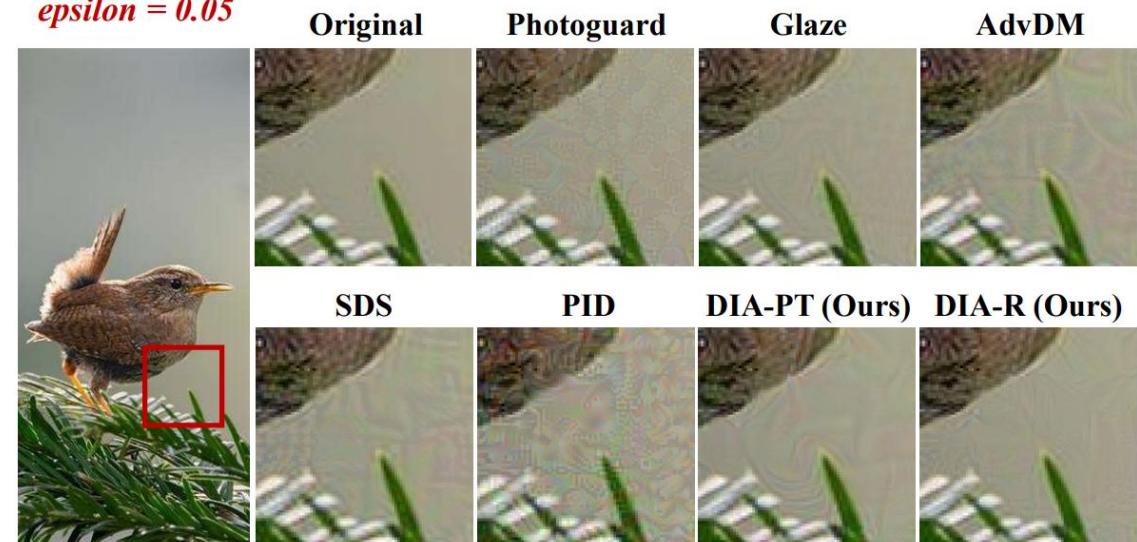


Comparing Performance Through Purification



Comparing Perturbed Images across Immunization Methods

epsilon = 0.05



Thanks!