

Divide-and-Conquer for Enhancing Unlabeled Learning, Stability, and Plasticity in Semi-supervised Continual Learning

Yue Duan¹, Taicai Chen¹, Lei Qi², and Yinghuan Shi¹

¹ Nanjing University, China ² Southeast University, China

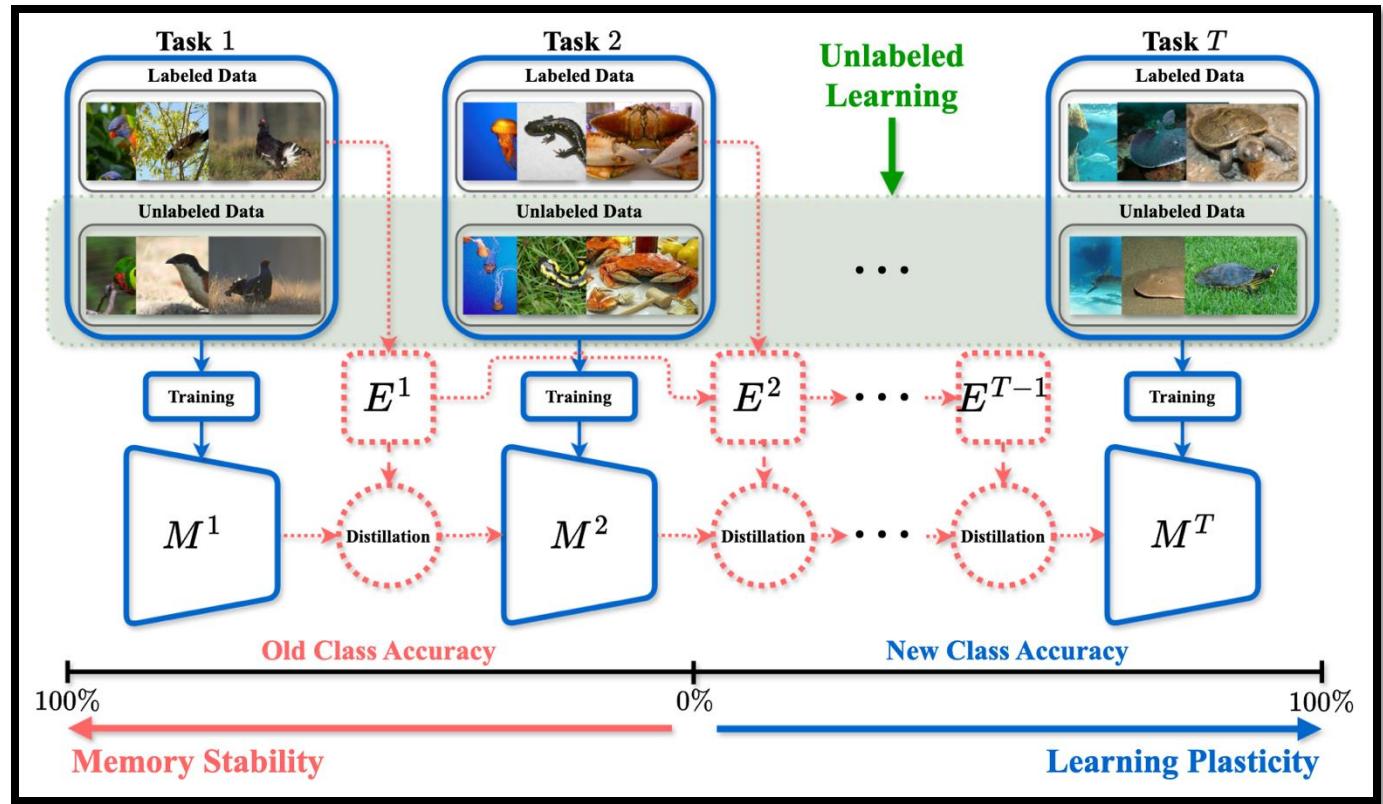
arXiv : <https://arxiv.org/abs/2508.05316>

GitHub : <https://github.com/NJUyued/USP4SSCL>

Zhihu (知乎) : <https://zhuanlan.zhihu.com/p/1940131476688577441>

Semi-supervised Continual Learning

- **Semi-supervised continual learning (SSCL)** faces a complex trade-off between
 - **Unlabeled Learning (UL)**
 - **Memory Stability (MS)**
 - **Learning Plasticity (LP)**
- This paper presents **USP**, a "divide-and-conquer" framework that systematically addresses these challenges with three synergistic modules.



Introduction

SSCL requires simultaneously learning from both labeled and unlabeled data across sequential tasks. Key challenges in SSCL include:

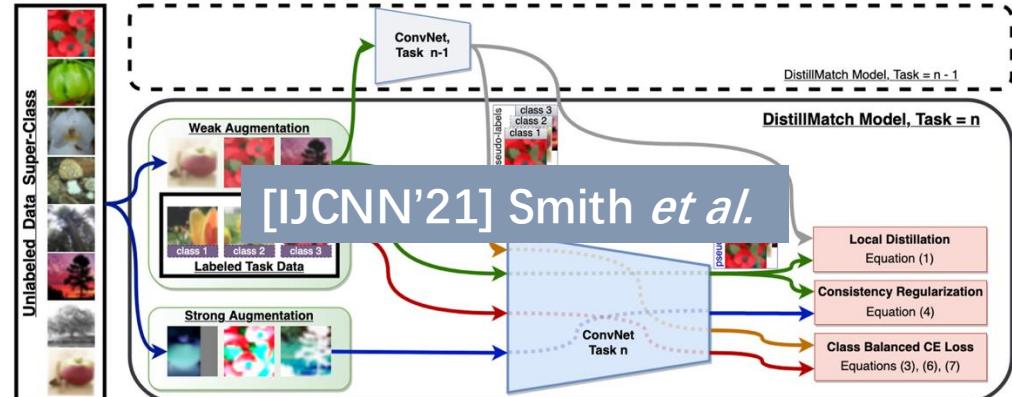
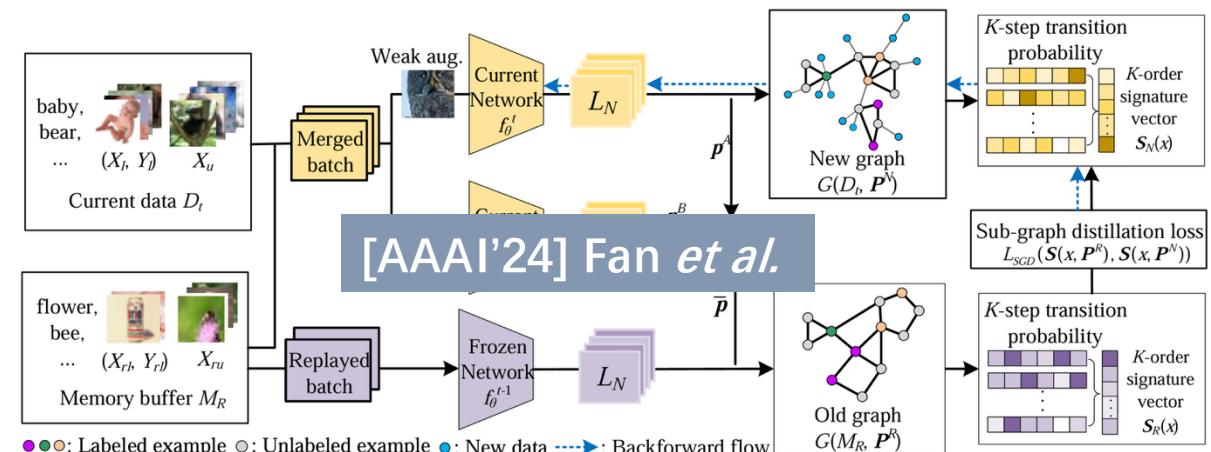
- **UL**: Anti-forgetting processes disrupt effective unlabeled learning, and common CL techniques (e.g., replay) often underutilize unlabeled data.
- **MS**: Catastrophic forgetting of past tasks.
- **LP**: Overfitting to limited labeled samples.

*Prior SSCL methods typically address only one or two of these challenges.
We propose USP to holistically enhance UL, MS, and LP for SSCL.*

Motivation

Intuition: Unlabeled learning (UL), memory stability (MS), and learning plasticity (LP): Can they not all be achieved simultaneously?

- Previous approaches primarily focus on just one or two of the three core challenges:
 - DistillMatch employs pseudo-labeling technique to utilize unlabeled data for training (**UL**)
 - DSGD leverages semantic and structural information from unlabeled data (**MS**)



Baseline SSCL Learner

We can review SSCL as a optimization task:

$$\min_{\theta} \sum_{t=1}^T \mathcal{L}_{\text{ssl}}(D^t) + \mathcal{L}_{\text{cl}}(E^t)$$

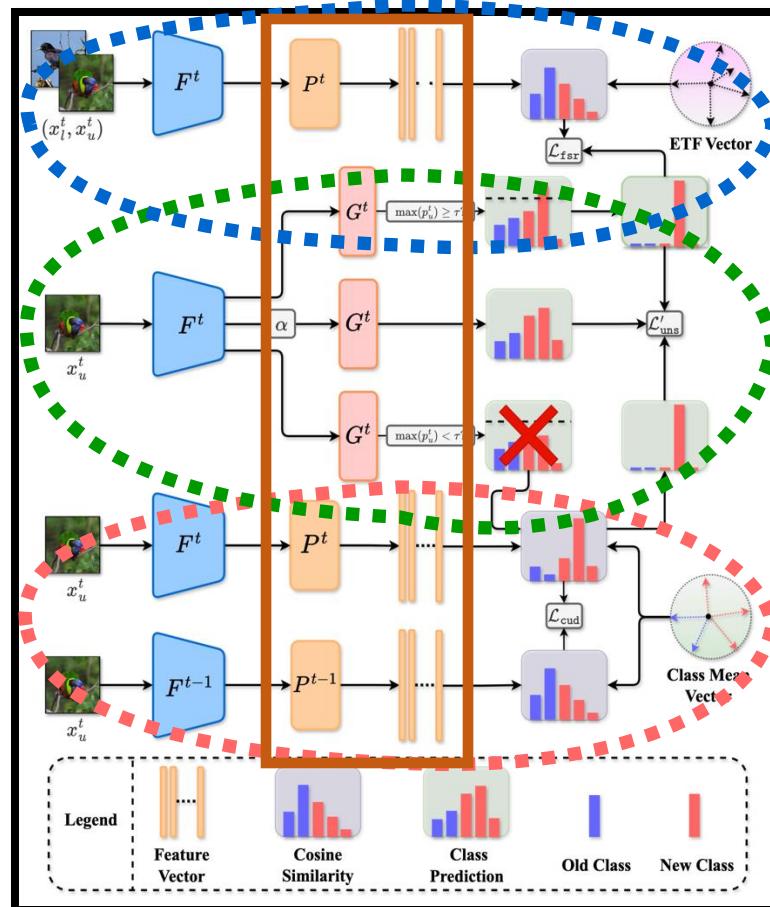
$$\mathcal{L}_{\text{ssl}}(D^t) = \mathcal{L}_{\text{sup}}(D_l^t) + \lambda_{\text{uns}} \mathcal{L}_{\text{uns}}(D_u^t)$$

$$\mathcal{L}_{\text{sup}}(D_l^t) = \mathbb{E}_{(x_l^t, y_l^t) \sim D_l^t} [H(p_{x_l^t}^t, y_l^t)]$$

$$\mathcal{L}_{\text{uns}}(D_u^t) = \mathbb{E}_{x_u^t \sim D_u^t} [\mathbb{1}(\tilde{p}_{x_u^t}^t \geq \tau) H(p_{\alpha(x_u^t)}^t, \hat{p}_{x_u^t}^t)]$$

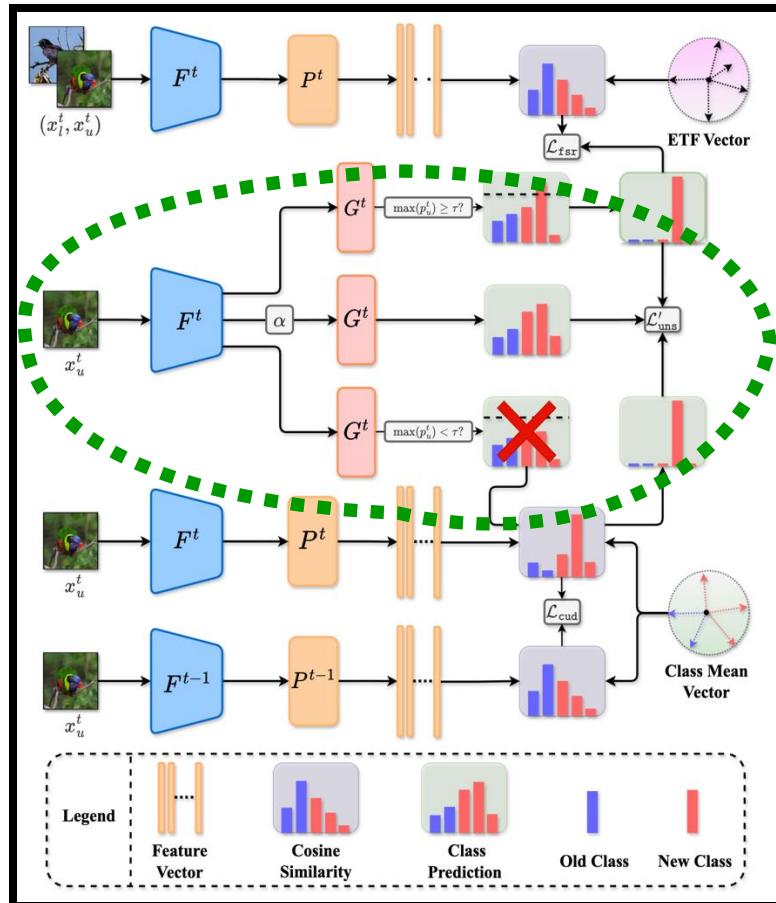
[NeurIPS'20] Sohn *et al.*

Method

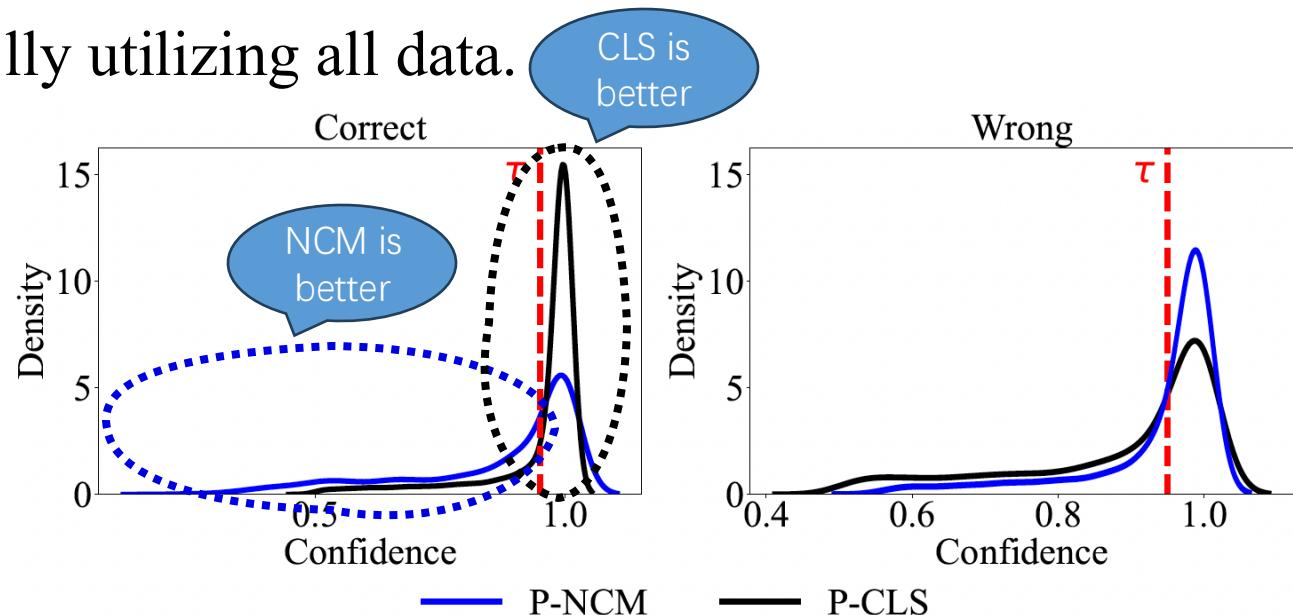


- Feature Space Reservation (FSR) [For Plasticity]
- Divide-and-Conquer Pseudo-labeling (DCP) [For Unlabeled Learning]
- Class-mean-anchored Unlabeled Distillation (CU-D) [For Stability]
- All components of USP consistently leverage the output features from $P(\cdot)$ aiming to strengthen the coupling of all components for mutual reinforcement.

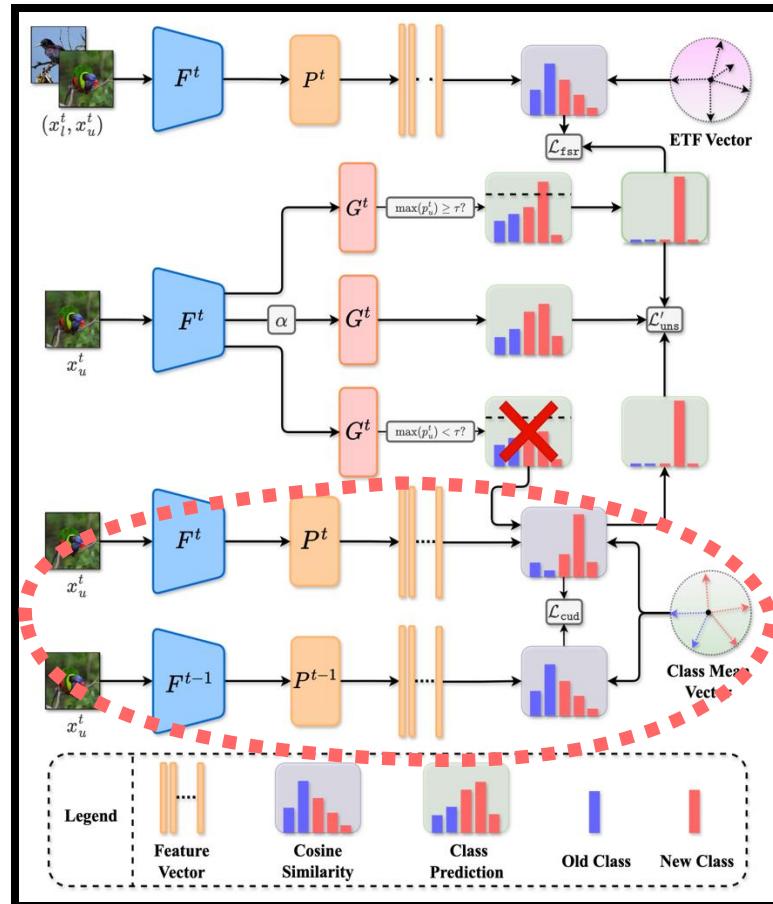
Divide-and-Conquer Pseudo-labeling (DCP)



- A dual-track strategy for unlabeled data: uses *classifier predictions* for *high-confidence* samples and a more robust *NCM method* for *low-confidence* ones, fully utilizing all data.



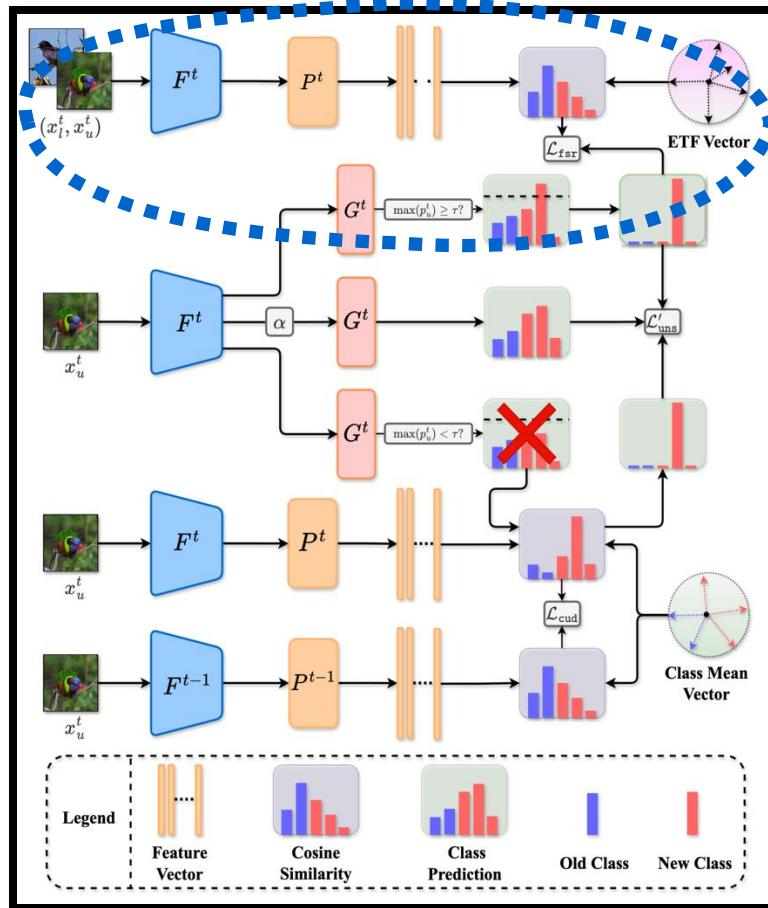
Class-mean-anchored Unlabeled Distillation (CUD)



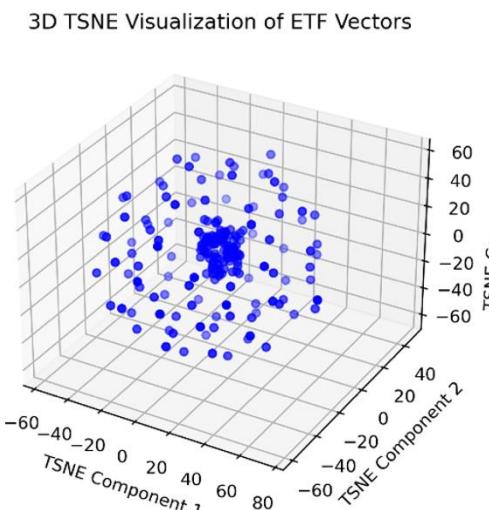
- *Reuses class means from DCP* as stable anchors.
- CUD distills the combined *relationships between labeled and unlabeled data* by anchoring unlabeled samples to the stable class mean features derived from labeled data.
- CUD v.s. logit distillation and feature distillation

Method	Avg	Last
logit	53.91	37.97
feature	48.16	33.56
CUD	54.36	38.25

Feature Space Reservation (FSR)



- Reserves feature space for future classes using an *Equiangular Tight Frame (ETF)*. A contrastive loss aligns sample features to these pre-defined, geometrically optimal positions, preventing feature conflicts.



$$\mathcal{L}_{\text{fsr}}(D^t) = \mathbb{E}_{(x_l^t, y_l^t) \sim D_l^t} \left[-\log \frac{\exp \left(\frac{S(\mathcal{E}_{:, y_l^t}, f_{x_l^t})}{\gamma} \right)}{\sum_{i=1}^k \exp \left(\frac{S(\mathcal{E}_{:, i}, f_{x_l^t})}{\gamma} \right)} \right] + \mathbb{E}_{x_u^t \sim D_u^t} \left[\mathbb{1} \left(\tilde{p}_{x_u^t}^t \geq \tau \right) - \log \frac{\exp \left(\frac{S(\mathcal{E}_{:, \tilde{p}_{x_u^t}^t}, f_{x_u^t})}{\gamma} \right)}{\sum_{i=1}^k \exp \left(\frac{S(\mathcal{E}_{:, i}, f_{x_u^t})}{\gamma} \right)} \right]$$

Experiment

Method	CIFAR10-30		CIFAR10-150		CIFAR100-20		CIFAR100-25		CIFAR100-80		CIFAR100-125	
	Avg	Last										
iCaRL [40]	34.16	21.84	60.86	53.65	26.43	13.92	28.14	15.29	36.32	19.10	44.14	30.73
DER [54]	40.41	31.48	64.77	61.06	31.01	23.53	32.82	26.53	53.32	41.55	57.21	48.86
CCIC [4]	-	55.20	-	74.30	-	29.50	-	29.50	-	-	-	44.30
ORDisCo [48]	-	-	74.77	65.91	-	-	-	-	-	-	-	-
DistillMatch [41]	-	-	-	-	-	-	-	-	37.00	-	-	-
NNCSL [24]	-	-	-	-	55.19	43.53	57.45	46.00	67.27	55.35	67.58	56.40
iCaRL&Fix [17]	45.98	30.71	78.36	69.08	45.75	23.40	49.83	31.25	53.46	32.21	56.87	41.38
+ DSGD [17]	77.33	76.41	84.14	79.69	52.80	35.47	53.42	35.95	57.92	37.81	58.08	43.14
+ USP (Ours)	79.66	70.43	84.78	78.21	53.20	41.30	54.36	38.25	58.59	44.20	59.96	43.80
DER&Fix [17]	66.71	61.41	81.1	77.00	51.76	40.86	52.03	44.47	64.03	50.25	66.69	53.57
+ DSGD [17]	75.04	72.59	83.08	79.39	55.63	44.63	57.94	46.68	65.48	55.4	69.14	58.5
+ USP (Ours)	81.43	73.65	84.43	77.74	58.79	45.22	59.87	47.44	68.67	60.45	71.60	63.08

- Dataset-X: number of labelled samples per class.
- CIFAR-10: 5 tasks; *Avg*: **81.43** v.s. 75.04; *Last*: **73.65** v.s. 72.59
- CIFAR-100: 10 tasks; *Avg*: **68.67** v.s. 65.48; *Last*: **60.45** v.s. 55.40

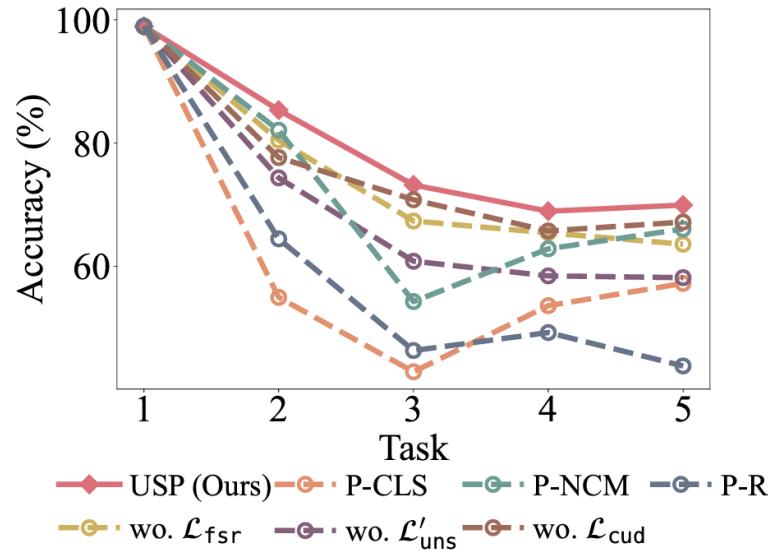
Experiment

Method	ImageNet100-13		ImageNet100-100	
	Avg	Last	Avg	Last
iCaRL [40]	19.89	12.88	30.78	16.68
NNCSL* [24]	42.19	33.64	56.78	53.84
iCaRL&Fix [17] + DSGD [17]	26.37 28.35	15.58 19.14	37.49 50.53	21.02 32.10
+ USP (Ours)	43.91	35.40	56.84	50.36
DER&Fix [17] + DSGD [17]	35.40 35.73	29.22 31.53	61.96 62.27	52.91 52.82
+ USP (Ours)	46.09	39.58	62.29	55.01

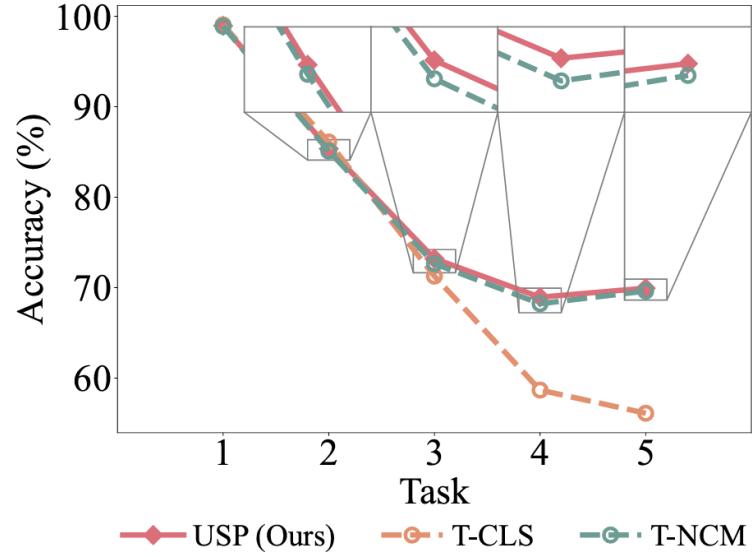
Method	Classes	Task ID											Avg
		1	2	3	4	5	6	7	8	9	10	11	
SS-iCaRL[10]	Base	69.89	62.32	60.62	58.99	58.59	57.77	59.88	56.21	54.46	50.54	46.11	57.76
	Novel	-	53.22	32.38	24.07	22.76	23.34	17.58	16.40	16.39	16.13	16.32	23.86
SS-NCM-CNN [10]	Base	69.89	65.80	64.97	63.79	63.81	61.08	65.24	63.73	58.77	55.74	51.88	62.24
	Novel	-	56.37	34.70	26.03	24.04	24.68	19.14	18.60	17.70	17.79	18.36	25.74
UaD-CIE* [12]	Base	75.87	74.58	74.09	73.46	72.24	71.68	71.33	70.50	70.15	69.27	69.13	72.03
	Novel	-	57.35	46.29	39.58	45.02	42.54	45.37	42.75	40.82	41.98	42.49	44.42
+ USP (Ours)*	Base	78.21	75.00	74.13	73.36	72.42	70.74	68.99	68.44	67.25	66.62	66.66	71.07
	Novel	-	69.18	60.07	50.93	55.67	53.08	52.86	53.64	51.07	53.00	54.57	55.41

- ImageNet-100: 10 tasks; *Avg: 43.91 v.s. 28.35; Last: 50.36 v.s. 32.10*
- CUB:
 - Few-show SSCL, 5 labeled images per class
 - 11 tasks; *Avg: 66.43 v.s. 64.3*

Ablation Analysis



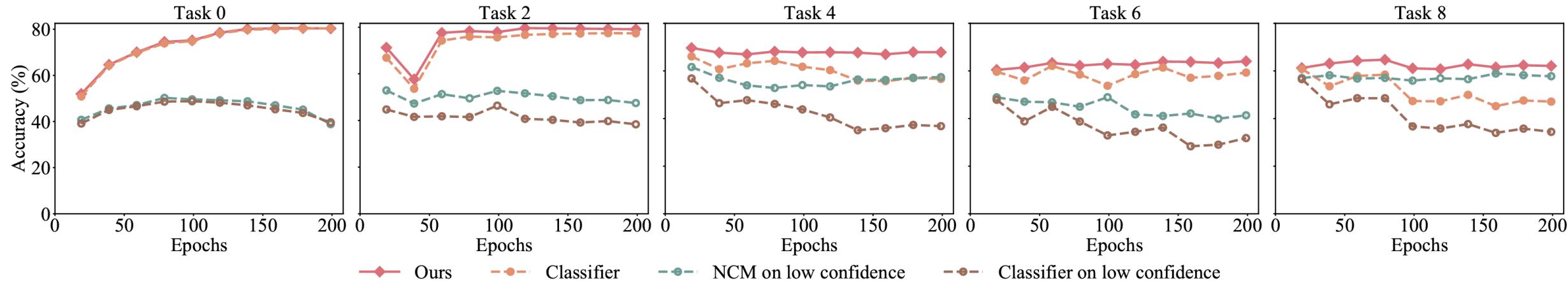
(a) Training phase



(b) Testing phase

- Ablation studies on the *main components* of USP
- The experiments are conducted on CIFAR-10 with 30 labels per
- *USP* v.s. classifier-only inference (“*T-CLS*”) and NCM-only inference (“*T-NCM*”)

Ablation Analysis



- Ours: *Divide-and-Conquer* Pseudo-Labeling
- Classifier: Use MLP classifier for *all samples*
- NCM: *NCM-based* classification results on low-confidence samples
- Classifier on low confidence: *MLP-classifier-based* classification results on low-confidence samples

Thanks!

Homepage: <https://njuyued.github.io/>

arXiv: <https://arxiv.org/pdf/2508.05316>

GitHub: <https://github.com/NJUyued/USP4SSCL>

Zhihu (知乎) : <https://zhuanlan.zhihu.com/p/1940131476688577441>

