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Semi-supervised Continual Learning

Task T

Semi-supervised continual learni
4 Labeled Data )

ng (SSCL) faces a complex trade-o
ff between
Unlabeled Learning (UL)
Memory Stability (MS)

Unlabeled
Learning

beos aET-E [T
Learning Plasticity (LP) -
* This paper presents USP, a "divide- we e b
and-conquer" framework that syste |
, Old Class Accuracy < New Class Accuracy ¢
matically addresses these challenge |0 0% 100%
S Wl th three Synergis th mo dules Memory Stability Learning Plasticity
2025/10/9 YUE DUAN 2



Drvlde-an’d-Conquer for-Enhancing Unlabeled Learnifit , = HONOLULU [g

<

JStablhf%l and Plastlclty in Seml-superwsed Contlnualleafmhg 0T ?3 ms HAWAIl =

ik

NANJING UNIVERSITY

Introduction

SSCL requires simultaneously learning from both labeled and unlabeled data across sequential
tasks. Key challenges in SSCL include:

*  UL: Anti-forgetting processes disrupt effective unlabeled learning, and common CL tech

niques (e.g., replay) often underutilize unlabeled data.

*  [VIS: Catastrophic forgetting of past tasks.
e L P: Overfitting to limited labeled samples.

Prior SSCL methods typically address only one or two of these challenges.

We propose USP to holistically enhance UL, MS, and LP for SSCL.
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Motivation

Intuition: Unlabeled learning (UL), memory stability (MS), and learn
ing plasticity (LLP): Can they not all be achieved simultaneously?

* Previous approaches primarily focus on just one or two of the three core challenges:

 DistillMatch employs pseudo-labeling technique to utilize unlabeled data for training (UL)
* DSGD leverages semantic and structural information from unlabeled data (IMS)
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Baseline SSCL Learner

We can review SSCL as a optimization task:
T
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Method

Feature Space Reservation (FSR) [For Plasticity]
Divide-and-Conquer Pseudo-labeling (DCP) [For
Unlabeled Learning]

Class-mean-anchored Unlabeled Distillation (CU
D) [For Stability]

All components of USP consistently leverage the ou
tput features fromD aiming to strengthen the co

upling of all components for mutual reinforcement.
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Divide-and-Conquer Pseudo-labeling (DCP)

| B * A dual-track strategy for unlabeled data: uses classif
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Class-mean-anchored Unlabeled Distillation (CUD)

%D o *  Reuses class means from DCP as stable anchors.
Ft > pt it . > < &7 4
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. L :
- beled and unlabeled data by anchoring unlabeled sa
! :@_’Gt |I|l :]
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* Reserves feature space for future classes using an £

: e quiangular Tight Frame (ETF). A contrastive loss al
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Experiment

Method CIFAR10-30 CIFAR10-150 CIFAR100-20 CIFAR100-25 CIFAR100-80 CIFAR100-125
Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last
iCaRL [40] 34.16 21.84 60.86 53.65 26.43 13.92 28.14 15.29 36.32 19.10 44.14 30.73
DER [54] 40.41 31.48 64.77 61.06 31.01 23.53 32.82 26.53 53.32 41.55 57.21 48.86
CCIC [4] - 55.20 - 74.30 - 29.50 - 29.50 - - - 44.30
ORDisCo [48] - - 74.77 65.91 - - - - - - - -
DistillMatch [41] - - - - - - - - - 37.00 - -
NNCSL [24] - - - - 55.19 43.53 57.45 46.00 67.27 55.35 67.58 56.40
iCaRL&Fix [17] 45.98 30.71 78.36 69.08 45.75 23.40 49.83 31.25 53.46 32.21 56.87 41.38
4+ DSGD [17] 77 33 26.41 3414 79 60 32 R() 35.47 53,42 35 OS5 57 Q2 37 K1
+ USP (Ours) 79.66 70.43 84.78 78.21 53.20 41.30 54.36 38.25 58.59 44.20 59.96 43.80
DER&Fix [17] 66.71 61.41 81.1 77.00 51.76 40.86 52.03 44.47 64.03 50.25 66.69 53.57
DSGD [171] 25,04 72 S0 23 OR 79 309 55 (3 44 .63 5294 46 .68 £3.48 5354 £9 14 SR8 5
+ USP (Ours) 81.43 73.65 84.43 77.74 58.79 45.22 59.87 47.44 68.67 60.45 71.60 63.08

* Dataset-X: number of labelled samples per class.
* CIFAR-10: 5 tasks; Avg: 81.43 v.s. 75.04, Last: 73.65 v.s. 72.59
 CIFAR-100: 10 tasks; Avg: 68.67 v.s. 65.48; Last: 60.45 v.s. 55.40
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Experiment

Method ‘ ImageNet100-13 ‘ ImageNet100-100 Method Citsises Task ID A
Avg Last Avg Last 1 2 3 4 5 6 7 8 9 10 11
iCaRL [40] ‘ 1989 12.88 ‘ 30.78 16.68 —_ Base 6989 6232 6062 5899 5859 5777 5988 5621 5446  S0.54 4611 5776
NNCSL* [24] 42.19 33.64 56.78 53.84 Novel ; 5322 3238 2407 2276 2334 1758 1640 1639 1613 1632  23.86
iCaRL&Fix [17] 26.37 15.58 37.49 21.02 .
‘ _ _ SSNCMLCNN[10]  Base 6989 6580 6497 6379 6381 6108 6524 6373 5877 5574 5188 6224

Novel - 56.37 34.70 26.03 24.04 24.68 19.14 18.60 17.70 17.79 18.36 25.74

UaD-CIE* [12] 1\1}3::; 75.87 Zgzg 74.09 73.46 72.24 71.68 71.33 70.50 70.15 69.27 69.13 72.03

Base
Novel

+ USP (Ours)*

TSP (Ours 26,09 39.58

* ImageNet-100: 10 tasks; Avg: 43.91 v.s. 28.35; Last: 50.36 v.s. 32.10
« CUB:

 Few-show SSCL, 5 labeled images per class
11 tasks; Ave: 66.43 v.s. 64.3
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Ablation Analysis
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—4—USP (Ours)~& - P-CLS§ —&:P-NCM —6&:PR Task
WO. Lsr =@ Wo. Ljps %" WO. Leud —4— USP (Ours) T-CLS =& T-NCM
(a) Training phase (b) Testing phase

* Ablation studies on the main components of USP
*  The experiments are conducted on CIFAR-10 with 30 labels per
*  USP v.s. classifier-only inference (“7-CLS”’) and NCM-only inference (“7-NCM™)
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Ablation Analysis
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—&— Qurs Classifier —-©— NCM on low confidence —+©= (lassifier on low confidence

*  Owurs: Divide-and-Conqguer Pseudo-Labeling

*  C(lassifier: Use MLP classifier for all samples

* NCM: NCM-based classification results on low-confidence samples

*  C(lassifier on low confidence: MLP-classifier-based classification results on low-confide

nce samples
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