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The Dynamic Range covered by a
single image is limited.
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g\ReIated Works

Image-based reconstruction

* CNN-based methods:
[Dille et al., ECCV'24] (a)
[Liu et al., CVPR’20]

(e) HDRev

: Events

: Colorful results
: More realistic

: Less distortion
-+: CNN models
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Image-based reconstruction
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g\ReIated Works

Image-based reconstruction

e Diffusion-based methods:
[Sagiri, Arxiv'24] (f)

(e) HDRev

: Events

: Colorful results
: More realistic

: Less distortion
-+: CNN models
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g\ReIated Works

Image-based reconstruction

(e) HDRev

: Events
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g\ReIated Works

Event-based reconstruction:
[EventHDR., CVPR21] (c)

(e) HDRev

: Events

: Colorful results

: More realistic

: Less distortion
A\ ® =: CNN models
AAA Diffusion models
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gRelated Works

(e) HDRev

: Events

: Colorful results
: More realistic

: Less distortion
-+: CNN models
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g\ReIated Works

Hybrid Event-and-image reconstruction:
[HDRev., CVPR’23] (e)

(e) HDRev

: Events

: Colorful results
: More realistic

: Less distortion
-+: CNN models
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g\ReIated Works

(e) HDRev

: Events

: Colorful results

: More realistic

: Less distortion
A\ ® =: CNN models
AAA Diffusion models
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g\Motivation

Event: provide HDR information

LDR: provide partial color and details

Diffusion: high-quality realistic image priors

Distortion: less distortion artifacts

(e) HDRev

A : Events

A : Colorful results
A : More realistic
A : Less distortion
-+: CNN models
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g\Motivation

Event: provide HDR information

LDR: provide partial color and details

Diffusion: high-quality realistic image priors

Distortion: less distortion artifacts

(e) HDRev
We propose to fuse them to reconstruct HDR
image to be consistent with the original scene. =

: Events

: Colorful results
: More realistic

: Less distortion
-+: CNN models
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Event-guided Conditioning and Generation

Event-image Encoder H RestCond: Decoder + Embedding Proposed: Pyramid Fusion P Legends
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?Fine-grained Detail Refinement

HDR Features
. Lstruct [
Oadj _— HlSt(O, Hdiff). -:J‘

2
LMSE(Hy Oadj) — ||H — Oadj || : Adapted GT Refined i |mage . ——
D 7
Lpere = ZH@ (Oua)|* +1G7 (H) = G} (Ou)[1* &
{ +
Lstruct = CVLMSE - B £perc> F -

Refined image
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?Fine-grained Detail Refinement
Oadj — HiSt(O, Hdiff).
EMSE(Ha Oadj) — ||H — Oadj”za

Loce = ¥ _||o1(H) — ¢1(Ouag)|* + 1G] (H) — G (O ||,
[

»Cstruct — CVLMSE —+ Bﬁperca
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Quantitative Evaluation on Synthetic Data

PSNRt SSIM{ LPIPS| CIEDE, FID| NIQE]
Liu et al. [1] 18.35  0.771 0.276 15.33 78.41 4.02
EventHDR[2]  11.04  0.334  0.447 2344 18211  4.58
Sagiri [3] 1250 0453  0.414 17.67 83.46 5.35
HDRev [4] 1405 0619  0.238 17.69 46.23 3.88
Neurlmg [5] 1853  0.621 0.338 17.42  105.07  4.04
Dile etal. []  19.73  0.820  0.243 9.76 76.83 4.22
Ours 25.67  0.926  0.099 6.01 27.09 3.86




Evaluation on Real Data
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?Evaluation on Real Data
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g\EvaIuation on Real Data
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EventHDR [49]

Neurlmg [13] Sagiri [20] Liu et al. [22] EventHDR [49]
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We integrate events and the conditional diffusion models to recover missing information faithfully;
We adopt the pretrained event-image encoder and pyramid fusion to effectively apply conditions; and
We design the refinement module and histogram-based structure loss to further strengthen fine-grained details.
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