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Introduction

 View Transformation for BEV (bird's-eye-view) fusion
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« Provides a unified bird's-eye-view representation of the scene
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Multi-modal

BEV features

3D object detection
BEV segmentation

Occupancy prediction

« Combines complementary strengths of cameras (rich semantics) and LiDAR (accurate geometry)

» Enables robust perception for downstream tasks (3D detection, tracking, planning)



Previous methods for view transformation

« Depth-based method

Depth estimation
networks

Rasterize into 3D grids //
& pool along z-axis

Image BEV features

Lift 2D image features into 3D space



Previous methods for view transformation

« Depth-based method

1. Heavily dependent on depth accuracy
2. Sparse BEV representation

3. Quantization error due to 3D grid rasterization

Result BEV feature map



Previous methods for view transformation

« Query-based method
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Pool along z-axis ///

Image BEV features

Project predefined 3D grid points into 2D image plane
& sample the image features at those projected positions



Previous methods for view transformation

« Query-based method

Result BEV feature map

Visually dense but with redundant features due
to the lack of spatial cues

Copying irrelevant features introduces noise
and confuses the network.

Attention-based methods to mitigate this issue
introduce a computational bottleneck.



Previous methods for view transformation

* Problems

« Both approaches have their own limitations.

It is also difficult to interpret what scene the
transformed BEV features are actually capturing.

Result of Result of
depth-based method query-based method

» We propose a LIDAR-guided view transformation that produces a noise-free, dense BEV
representation with accurate spatial placement, without computational bottlenecks!!



The proposed view transformation

e Overview

Adaptive Sampling Adaptive Projection
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" 2.Project to image plane
& sample image features

/ 2. Channel-wise matrix multiplication
’ 1
3. Weighted pooling e _-, ,7' ? | — - /
03 / //
. . Intermediate BEV image features

BEV image features

o Adaptive Kernels
A&
K 1’ enerate adaptive kernels
/

. /
LiDAR BEV features Identical features LiDAR BEV features

ASAP: two-stage view-transformation method using LIDAR guidance

« Adaptive Sampling (AS): generates intermediate image BEV features
« Adaptive Projection (AP): refines the intermediate image BEV features



Adaptive Sampling (AS) — generate stage

« Overview of Adaptive Sampling (AS)

2. Project to image plane & sample image features
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Adaptive Sampling (AS) — generate stage

 Defining 3D sampling points
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Previous (query-based method)

Input-invariantly predefined 3D grid points
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Proposed

1. Generate 3D points

LIDAR

LiDAR BEYV features

Adaptive 3D points in continuous space

» Previous methods sample uniformly even in empty space, whereas our approach uses LIDAR
guidance to adaptively generate sampling points within object regions.




Adaptive Sampling (AS) — generate stage

 Point projection & feature sampling

2. Project to image plane

& sample image features . prgject 3D points onto the image plane using
known camera parameters

-———-s-_ « Sample image features at projected locations

M’“eﬁ (bilinear interpolation)

» Several methods apply deformable attention at this stage (adding multiple offsets around
each sampling point)

» Ours only requires simple bilinear interpolation — sampling points are already well aligned



Adaptive Sampling (AS) — generate stage

 Pooling features along z-axis
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LiDAR BEV features

» LiDAR guidance assigns weights to the points along the z-axis, enabling weighted pooling.



Adaptive Projection (AP) — refine stage

e Overview

2. Project to image plane
& sample image features

Noisy features from AS

2. Channel-wise matrix multiplication
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LiDAR BEV features

AP refines the intermediate BEV features

» Feature sampling stage inevitably produce misaligned features

» The proposed method refine directly in 3D space with LiDAR guidance.

BEV image features

o [Adaptive Kernels
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Adaptive Projection (AP) — refine stage

 Generate adaptive kernels for each grid cell

IAdaptive Kernels
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1féenerate adaptive kernels

LiDAR BEYV features

» LIDAR guided input-dependent refinement kernels



Adaptive Projection (AP) — refine stage

* Feature refinement using adaptive kernels

2. Channel-wise matrix multiplication
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Intermediate BEV image features
BEV image features

Adaptive Kernels

» Suppresses ambiguous or redundant assignments

» Enhances features more consistent with the actual 3D geometry.



Results

« Comparison of sampling points

Adaptive Sampling: adaptive 3D points in continuous space



Results

* Visualization of image BEV feature maps

(a) vanilla (b) only AS (¢) only AP (d) ASAP



Results

« Performance comparison on nuScenes validation and test sets

Method Modality | NDS (val) mAP (val) | NDS (test) mAP (test)
TransFusion [ 1] LC 71.3 67.5 71.7 68.9
Deeplnteraction [48] LC 72.6 69.9 73.4 70.8
BEVFusion [30] LC 71.4 68.5 72.9 70.2
FocalFormer3D [5] LC 71.1 66.5 73.9 71.6
CMT [45] LC 72.9 70.3 74.1 72.0
BEVFusion4dD-S [3] LC 72.9 70.9 73.7 71.9
SparseFusion [44] LC 72.8 70.4 73.8 72.0
UniTR [39] LC 73.3 70.5 74.5 70.9
FusionFormer [11] LCT 74.1 714 75.1 72.6
EVT (Ours) LC 74.6 72.1 75.3 72.6

> Our method ranks first on the official nuScenes leaderboard under the same conditions
(no ensembling, no TTA).



Results

« Efficiency of the proposed view transformation method
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> ASAP takes only 3 ms (=2% overhead)

> EVT is both faster and more accurate than other methods.
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